Design of a Gene Panel to Expose the Versatile Role of Hepatic Stellate Cells in Human Liver Fibrosis.

Pharmaceutics

Groningen Research Institute of Pharmacy, Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, 9713 AV Groningen, The Netherlands.

Published: March 2020

The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor β (TGFβ) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFβ- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151042PMC
http://dx.doi.org/10.3390/pharmaceutics12030278DOI Listing

Publication Analysis

Top Keywords

gene panel
8
hepatic stellate
8
stellate cells
8
human liver
8
liver fibrosis
8
vitro vivo
8
antifibrotic drugs
8
gene expression
8
cell lines
8
liver slices
8

Similar Publications

Multi-insertion/deletion polymorphisms (Multi-InDels), as the novel genetic markers, show great potential in forensic research. Whereas, forensic researchers mainly focus on the multi-InDels on the autosomes, which can provide relatively limited information in some complex paternity cases. In this study, a novel X chromosomal multi-InDel multiplex amplification system was designed, containing 22 multi-InDels and one STR locus on the X chromosome.

View Article and Find Full Text PDF

Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.

Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.

View Article and Find Full Text PDF

Interpretable machine learning-driven biomarker identification and validation for Alzheimer's disease.

Sci Rep

December 2024

Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, China.

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by limited effective treatments, underscoring the critical need for early detection and diagnosis to improve intervention outcomes. This study integrates various bioinformatics methodologies with interpretable machine learning to identify reliable biomarkers for AD diagnosis and treatment. By leveraging differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis (WGCNA), and construction of Protein-Protein Interaction (PPI) Networks, we meticulously analyzed the AD dataset from the GEO database to pinpoint Hub genes.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 virus's frequent mutations have made disease control with vaccines and antiviral drugs difficult; as a result, there is a need for more effective coronavirus drugs. Therefore, detecting the expression of various diagnostic biomarkers, including ncRNA in SARS-CoV2, implies new therapeutic strategies for the disease.

Aim: Our study aimed to measure NEAT-1, miR-374b-5p, and IL6 in the serum of COVID-19 patients, demonstrating the correlation between target genes to explore the possible relationship between them.

View Article and Find Full Text PDF

Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds.

Trop Anim Health Prod

December 2024

Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.

In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!