Novel polymeric acrylate-based flame retardants (FR 1-4) containing two phosphorus groups in different chemical environments were synthesized in three steps and characterized via nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mass spectrometry (MS). Polylactic acid (PLA) formulations with the synthesized compounds were investigated to evaluate the efficiency of these flame retardants and their mode of action by using TGA, UL94, and cone calorimetry. In order to compare the results a flame retardant polyester containing only one phosphorus group (ItaP) was also investigated in PLA regarding its flame inhibiting effect. Since the fire behavior depends not only on the mode of action of the flame retardants but also strongly on physical phenomena like melt dripping, the flame retardants were also incorporated into PLA with higher viscosity. In the UL94 vertical burning test setup, 10% of the novel flame retardants (FR 1-4) is sufficient to reach a V-0 rating in both PLA types, while a loading of 15% of ItaP is not enough to reach the same classification. Despite their different structure, TGA and cone calorimetry results confirmed a gas phase mechanism mainly responsible for the highly efficient flame retardancy for all compounds. Finally, cone calorimetry tests of the flame retardant PLA with two heat fluxes showed different flame inhibiting efficiencies for different fire scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240360 | PMC |
http://dx.doi.org/10.3390/polym12040778 | DOI Listing |
Sci Total Environ
January 2025
Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.
View Article and Find Full Text PDFFront Chem
December 2024
School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.
View Article and Find Full Text PDFFront Public Health
January 2025
The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
Background: The association between brominated flame retardants (BFRs) and periodontitis has remained unclear.
Methods: This research included adult participants from NHANES cycles 2009-2014. Survey-weighted generalized linear regressions were used to explore the associations between BFR exposure and periodontitis.
Ann Agric Environ Med
December 2024
Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH / National Research Institute, Warsaw, Poland.
Introduction And Objective: Polybrominated diphenyl ethers (PBDEs) are a class of flame-retarding synthetic compounds. They may cause a potential threat to human health due to their bio-accumulative and toxicological properties, and ubiquitous presence in the environment. Food, and ingested dust constitute principal sources of human exposure to PBDEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!