Quadcopters are beginning to play an important role in precision agriculture. In order to localize and operate the quadcopter automatically in complex agricultural settings, such as a greenhouse, a robust positioning system is needed. In previous research, we developed a spread spectrum sound-based local positioning system (SSSLPS) with a 20 mm accuracy within a 30 × 30 m greenhouse area. In this research, a noise tolerant SSSLPS was developed and evaluated. First, the acoustic noise spectrum emitted by the quadcopter was documented, and then the noise tolerance properties of SSSounds were examined and tested. This was done in a greenhouse with a fixed quadcopter (9.75 N thrust) with the positioning system mounted on it. The recorded quadcopter noise had a broadband noise compared to the SSSound. Taking these SSSound properties into account, the noise tolerance of the SSSLPS was improved, achieving a positioning accuracy of 23.2 mm and 31.6 mm accuracy within 12 × 6 m for both Time-division Multiple Access (TDMA) and Frequency-division Multiple Access (FDMA) modulation. The results demonstrate that the SSSLPS is an accurate, robust positioning system that is noise tolerant and can used for quadcopter operation even within a small greenhouse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180864 | PMC |
http://dx.doi.org/10.3390/s20071981 | DOI Listing |
Soc Stud Sci
January 2025
Science, Technology and Innovation Studies, The University of Edinburgh, Edinburgh, Scotland, UK.
Accounts of the origins of the genomic commons typically focus on the development of public repositories and data-sharing agreements. This article tells a different story. During the 1990s in the United States, efforts of private companies to prevent the patenting of certain kinds of DNA sequences were essentially a conservative response to shifts in the sociotechnical constitution of the pharmaceutical innovation system, and to the operation of intellectual property as one of the key knowledge control regimes that regulate that system.
View Article and Find Full Text PDFNat Protoc
January 2025
Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).
View Article and Find Full Text PDFSci Rep
January 2025
Research and Development, Aesculap AG, Tuttlingen, Germany.
In clinical movement biomechanics, kinematic measurements are collected to characterise the motion of articulating joints and investigate how different factors influence movement patterns. Representative time-series signals are calculated to encapsulate (complex and multidimensional) kinematic datasets succinctly. Exacerbated by numerous difficulties to consistently define joint coordinate frames, the influence of local frame orientation and position on the characteristics of the resultant kinematic signals has been previously proven to be a major limitation.
View Article and Find Full Text PDFSci Rep
January 2025
Chair of Applied Mechanics, Technical University of Munich, Garching, 85748, Germany.
Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Haohua Hongqingliang Mining Company, Ltd, Ordos, 014300, Inner Mongolia, China.
Caving mining in extra-thick coal seams induces large-scale overburden movement, leading to more intense fracture processes in key strata, more significant surface subsidence, and frequent dynamic disasters in mines. This study, using the N34-2 caving face of the 17th coal seam at Junde Mine as a case study, aims to investigate the time-varying linkage mechanism between surface subsidence, microseismic characteristics, and fracture scales of the overburden's key strata under such mining conditions. Based on Timoshenko's theory, a bearing fracture mode for the overburden's key strata is proposed, and corresponding fracture criteria are established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!