As the main symptom of Alzheimer's disease-related dementia is memory loss, patient compliance for donepezil hydrochloride (donepezil), administered as once-daily oral formulations, is poor. Thus, we aimed to design poly(lactic--glycolic acid) (PLGA) microspheres (MS) with alginate-coated large pores as an injectable depot of donepezil exhibiting sustained release over 2-3 weeks. The PLGA MS with large pores could provide large space for loading drugs with high loading capacity, and thereby sufficient amounts of drugs were considered to be delivered with minimal use of PLGA MS being injected. However, initial burst release of donepezil from the porous PLGA MS was observed. To reduce this initial burst release, the surface pores were closed with calcium alginate coating using a spray-ionotropic gelation method. The final pore-closed PLGA MS showed in vitro sustained release for approximately 3 weeks, and the initial burst release was remarkably decreased by the calcium alginate coating. In the prediction of plasma drug concentration profiles using convolution method, the mean residence time of the pore-closed PLGA MS was 2.7-fold longer than that of the porous PLGA MS. Therefore, our results reveal that our pore-closed PLGA MS formulation is a promising candidate for the treatment of dementia with high patient compliance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238133PMC
http://dx.doi.org/10.3390/pharmaceutics12040311DOI Listing

Publication Analysis

Top Keywords

large pores
12
initial burst
12
burst release
12
pore-closed plga
12
plga
9
plga microspheres
8
microspheres alginate-coated
8
alginate-coated large
8
injectable depot
8
depot donepezil
8

Similar Publications

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

This paper describes the production and high-current-density hydrogen evolution reaction (HER) performance in the whole pH range (from acidic to basic pH values) of self-supported α-MoB/β-MoB ceramic electrodes, aiming for use in industrial electrocatalytic water splitting. Tape-casting and phase-inversion process, followed by sintering, were employed to synthesize self-supported β-MoB ceramic electrodes, which exhibited well arranged large finger-like pores, providing numerous active sites and channels for electrolyte entry and hydrogen release. The reaction between β-MoB and the sintering aid of MoO produces α-MoB/β-MoB heterojunctions, which significantly improve the electrocatalytic performance.

View Article and Find Full Text PDF

Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm.

View Article and Find Full Text PDF

Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.

View Article and Find Full Text PDF

This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!