The molecular mechanisms regulating neurogenesis involve the control of gene expression by transcription factors. and , two members of the Gbx family of homeodomain-containing transcription factors, are known for their essential roles in central nervous system development. The expression domains of mouse and include regions of the forebrain, anterior hindbrain, and spinal cord. In the spinal cord, and are expressed in PAX2 interneurons of the dorsal horn and ventral motor neuron progenitors. Based on their shared domains of expression and instances of overlap, we investigated the functional relationship between family members in the developing spinal cord using , , and / embryos. In situ hybridization analyses of embryonic spinal cords show upregulation of expression in embryos and upregulation of expression in embryos. Additionally, our data demonstrate that genes regulate development of a subset of PAX2 dorsal inhibitory interneurons. While we observe no difference in overall proliferative status of the developing ependymal layer, expansion of proliferative cells into the anatomically defined mantle zone occurs in mutants. Lastly, our data shows a marked increase in apoptotic cell death in the ventral spinal cord of mutants during mid-embryonic stages. While our studies reveal that both members of the gene family are involved in development of subsets of PAX2 dorsal interneurons and survival of ventral motor neurons, and are not sufficient to genetically compensate for the loss of one another. Thus, our studies provide novel insight to the relationship harbored between and in spinal cord development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345146PMC
http://dx.doi.org/10.3390/jdb8020009DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
motor neurons
8
embryonic spinal
8
transcription factors
8
ventral motor
8
upregulation expression
8
expression embryos
8
pax2 dorsal
8
spinal
7
cord
6

Similar Publications

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy.

Nat Commun

December 2024

Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

NET formation-mediated in situ protein delivery to the inflamed central nervous system.

Nat Commun

December 2024

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!