AI Article Synopsis

  • Fluoxetine (FLX) is recognized as an effective antidepressant, and this study explores its combined effects with 7, 8-dihydroxyflavone (7, 8 DHF) on depression during the perimenopausal phase.
  • The results indicate that the combination of FLX and 7, 8 DHF significantly improves depressive-like behaviors, supported by biochemical changes in the brain, including increased levels of key proteins and reduced inflammation and apoptosis.
  • Techniques like western blot and RT-qPCR were used to assess these changes, implying that this combination therapy could be a promising treatment option for perimenopausal depression.

Article Abstract

Fluoxetine (FLX) has been considered as an effective anti-depressant drug. Besides, previous studies reported reasonable anti-depressant effects for 7, 8-dihydroxyflavone (7, 8 DHF). However, the combination of FLX and 7, 8 DHF in a well-established depression model has not been explored. In this study, we demonstrate that the 7, 8 DHF can improve the anti-depressant efficacy of FLX in a chronic unpredictable mild stress (CUMS)-induced depression during the perimenopausal period. The corresponding mechanism of FLX+7, 8 DHF therapy and the effect of ANA-12 are also investigated. Moreover, the influences of 7, 8 DHF (5 mg/kg/day), FLX (18 mg/kg/day), and ANA-12 (0.5 mg/kg/day) on a depressive-like behavior are displayed. Inflammatory, autophagic and apoptotic changes of hippocampus and cortex are examined by using western blot, immunofluorescence, and Real-Time Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) techniques. The protein levels of phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (Akt)/mechanistic target of rapamycin (mTOR)/phosphorylated extracellular signal-regulated kinase1/2 (p-ErK 1/2)/brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) of hippocampus and cortex are assessed by western blot. The combined FLX and 7, 8 DHF treatment can significantly improve depressive-like behavior in sucrose preference and forced swimming tests accompanied by a noticeable upregulation of autophagy, neuronal nuclei (NeuN), ionized calcium-binding adaptor molecule 1 (Iba1) expressions, and PI3K/Akt/ mTOR/ p-ErK 1/2 signaling pathways. Besides, an obvious increase of the brain-derived neurotrophic factor (BDNF) and TrkB levels are observed with down-regulated inflammation and apoptosis. These findings suggest that the integrated FLX and 7, 8 DHF holds a potential as an efficient treatment to ameliorate depressive-like behavior in perimenopausal patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2020.109939DOI Listing

Publication Analysis

Top Keywords

depressive-like behavior
16
flx dhf
12
perimenopausal period
8
hippocampus cortex
8
western blot
8
neurotrophic factor
8
dhf
7
flx
6
optimized integration
4
integration fluoxetine
4

Similar Publications

Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: implicating core fucosylation has an antidepressant potential.

J Biol Chem

January 2025

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8) and heterozygous KO (Fut8) mice contrasted to the wild-type (Fut8) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation.

View Article and Find Full Text PDF

Mice Lacking the Serotonin Transporter do not Respond to the Behavioural Effects of Psilocybin.

Eur J Pharmacol

January 2025

Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia. Electronic address:

Background And Purpose: Psilocybin is a serotonergic psychedelic with therapeutic potential for several neuropsychiatric disorders, including depression and anxiety disorders. Serotonin-transporter (5-HTT) knockout mice (KO) are a well-validated mouse model of anxiety/depression and are relevant to both chronic treatment with serotonin transporter reuptake inhibitors (SSRIs) and polymorphisms in the serotonin transporter-linked polymorphic region (5-HTTLPR) associated with depression/anxiety and resistance to classic antidepressant treatments. However, there is yet to be a study assessing the effect of psilocybin in 5-HTT KO mice.

View Article and Find Full Text PDF

Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Anxiolytic, Antidepressant, and Anticholinesterase Effects of Essential Oil from (G.Mey.) DC.

Biomolecules

January 2025

Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Pará, Belém 66075-110, PA, Brazil.

Aromatic plants are rich sources of essential oils (EOs), recognized for their therapeutic properties due to their diversity of phytochemicals. This study investigated the anxiolytic and antidepressant effects of essential oil (MsEO) through inhalation in an animal model and its in vitro anticholinesterase (AChE) activity. The EO was obtained by hydrodistillation, and its volatile constituents were analyzed by GC-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!