Background: Type 1 diabetes (T1DM) severely threatens human health, and the dysfunction of insulin-secreting β cells in islets is related to the reduced PDX-1 expression. It has been reported that long non-coding RNA MALAT1 regulates β cell function, while the potential mechanism is unclear.

Methods: Islets were isolated from non-obese diabetic (NOD) mice and wild type (WT) mice. Mouse islets and β cell line (Min6) were stimulated by IL-1β. The expression of MALAT1 was determined using real-time PCR, while the PDX-1 protein expression was determined using western blotting. ChIP-qPCR was carried out to determine the histone acetylation of the PDX-1 promoter.

Results: In NOD islets and IL-1β-stimulated Min6 cells, the expression of MALAT1 was increased, while the mRNA and protein levels of PDX-1 were decreased at an age/time-dependent manner. Overexpressing MALAT1 suppressed the H3 histone acetylation of the PDX-1 promoter, inhibiting both mRNA and protein expressions of PDX-1. Knocking down MALAT1 restored the decrease of the histone acetylation of the PDX-1 promoter, as well as the PDX-1 expression, which was reduced by IL-1β stimulation. Under high glucose stimulation, the overexpression of PDX-1 alone restored the insulin secretion which was inhibited by the simultaneous overexpression of MALAT1 and PDX-1. Under high glucose and IL-1β stimulation, the simultaneous knockdown of MALAT1 and PDX-1 reduced the enhancement of the insulin secretion which was raised by knocking down MALAT1 alone.

Conclusion: MALAT1 induces the dysfunction of β cells via reducing the H3 histone acetylation of the PDX-1 promoter and subsequently inhibiting the expression of PDX-1, thus suppressing the insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2020.104432DOI Listing

Publication Analysis

Top Keywords

histone acetylation
20
acetylation pdx-1
20
pdx-1 promoter
16
pdx-1
14
insulin secretion
12
malat1
9
malat1 induces
8
induces dysfunction
8
dysfunction cells
8
cells reducing
8

Similar Publications

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

Epigenetic abnormalities play a critical role in colon carcinogenesis, making them a promising target for therapeutic interventions. In this study, we demonstrated that curcumin reduces colon cancer cell survival and that a decrease in lysine methylation was involved in such an effect. This correlated with the downregulation of methyltransferases EZH2, MLL1, and G9a, in both wild-type p53 (wtp53) HCT116 cells and mutant p53 (mutp53) SW480 cells, as well as SET7/9 specifically in wtp53 HCT116 cells.

View Article and Find Full Text PDF

Butyrate supplementation has gained considerable attention for its potential benefits in livestock, particularly concerning intestinal health and growth performance. This review synthesizes recent research on the diverse roles of butyrate, across various livestock species. As a short-chain fatty acid, butyrate is known for enhancing intestinal development, improving immune function, and modulating microbial diversity.

View Article and Find Full Text PDF

HDC1 Promotes Primary Root Elongation by Regulating Auxin and K Homeostasis in Response to Low-K Stress.

Biology (Basel)

January 2025

Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.

Plants frequently encounter relatively low and fluctuating potassium (K) concentrations in soil, with roots serving as primary responders to this stress. Histone modifications, such as de-/acetylation, can function as epigenetic markers of stress-inducible genes. However, the signaling network between histone modifications and low-K (LK) response pathways remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!