A Self-Activation Loop Maintains Meristematic Cell Fate for Branching.

Curr Biol

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: May 2020

In plants and animals, self-renewing stem cell populations play fundamental roles in many developmental contexts. Plants differ from most animals in their retained ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems. In seed plants, branching is achieved by stem-cell-containing axillary meristems, which are initiated from a leaf axil meristematic cell population originally detached from the shoot apical meristem. It remains unclear how the meristematic cell fate is maintained. Here, we show that ARABIDOPSISTHALIANAHOMEOBOXGENE1 (ATH1) maintains the meristem marker gene SHOOT MERISTEMLESS (STM) expression in the leaf axil to enable meristematic cell fate maintenance. Furthermore, ATH1 protein interacts with STM protein to form a STM self-activation loop. Genetic and biochemical data suggest that ATH1 anchors STM to activate STM as well as other axillary meristem regulatory genes. This auto-regulation allows the STM locus to remain epigenetically active. Taken together, our findings provide a striking example of a self-activation loop that maintains the flexibility required for stem cell niche re-establishment during organogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2020.03.031DOI Listing

Publication Analysis

Top Keywords

meristematic cell
16
self-activation loop
12
cell fate
12
loop maintains
8
stem cell
8
leaf axil
8
cell
6
stm
6
meristematic
4
maintains meristematic
4

Similar Publications

Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.

View Article and Find Full Text PDF

Meristematic and meristematic-like fungi in .

Fungal Syst Evol

December 2024

Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia (DEBIOTEC), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil.

Meristematic fungi are mainly defined as having aggregates of thick-walled, melanised cells enlarging and reproducing by isodiametric division. black meristematic and meristematic-like fungi have been allied to , which currently has two accepted families, and , with fungi mainly regarded as pathogens, parasites, saprobes and epiphytes of different plant species. This study aimed to verify the phylogenetic position using four nuclear markers (SSU, LSU, ITS and ) of the genera associated with , namely , , and , and the new genus, .

View Article and Find Full Text PDF

The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.

View Article and Find Full Text PDF

Plasmodesmata are cell-wall-embedded channels that evolved in the common ancestor of land plants to increase cell-to-cell communication. Whether all the fundamental properties of plasmodesmata emerged and were inherited in all land plants at the same time is unknown. Here we show that the bryophyte Marchantia polymorpha (a non-vascular plant) forms mostly simple plasmodesmata in early-developing gemmae.

View Article and Find Full Text PDF

Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!