Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275895 | PMC |
http://dx.doi.org/10.1016/j.stem.2020.03.006 | DOI Listing |
JCI Insight
January 2025
Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, United States of America.
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea.
Introduction: , primary rat oligodendrocytes (OLs) are widely used for research on OL development, physiology, and pathophysiology in demyelinating diseases such as multiple sclerosis. Primary culture methods for OLs from rats have been developed and improved over time, but there are still multiple aspects in which efficiency can be boosted.
Methods: To make use of excess oligodendrocyte progenitor cells (OPCs) from primary cultures, a cryopreservation process utilizing a commercially available serum-free cryopreservation medium was established to passage and freeze OPCs at -80°C for later use.
Cell Commun Signal
January 2025
Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
Degeneration of cochlear spiral ganglion neurons (SGNs) leads to irreversible sensorineural hearing loss (SNHL), as SGNs lack regenerative capacity. Although cochlear glial cells (GCs) have some neuronal differentiation potential, their specific identities remain unclear. This study identifies a distinct subpopulation, Frizzled10 positive (FZD10+) cells, as an important type of GC responsible for neuronal differentiation in mouse cochlea.
View Article and Find Full Text PDFMol Carcinog
January 2025
Institute of Precision Medicine, The First Affiliated Hospital; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Acute myeloid leukemia (AML) is marked by the proliferation of abnormal myeloid progenitor cells in the bone marrow and blood, leading to low cure rates despite new drug approvals from 2017 to 2018. Current therapies often fail due to the emergence of drug resistance mechanisms, such as those involving anti-apoptotic pathways and immune evasion, highlighting an urgent need for novel approaches to overcome these limitations. Programmed cell death (PCD) is crucial for tissue homeostasis, with PANoptosis-a form of PCD integrating pyroptosis, apoptosis, and necroptosis-recently identified.
View Article and Find Full Text PDFGamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!