AI Article Synopsis

  • There is an increasing concern about the neurotoxicity of organophosphate flame retardants (OPFRs) due to their rising use and human exposure.
  • Previous studies indicated that exposure to the flame retardant mixture Firemaster 550 (FM 550) led to sex-specific behavioral changes in rats and targeted the placenta for potential toxicity.
  • Current research aims to investigate how OPFRs affect placental function and fetal brain development, focusing on disruptions in tryptophan metabolism and alterations in serotonin production and projections in the developing brain of male rats.

Article Abstract

There is a growing need to understand the potential neurotoxicity of organophosphate flame retardants (OPFRs) and plasticizers because use and, consequently, human exposure, is rapidly expanding. We have previously shown in rats that developmental exposure to the commercial flame retardant mixture Firemaster 550 (FM 550), which contains OPFRs, results in sex-specific behavioral effects, and identified the placenta as a potential target of toxicity. The placenta is a critical coordinator of fetal growth and neurodevelopment, and a source of neurotransmitters for the developing brain. We have shown in rats and humans that flame retardants accumulate in placental tissue, and induce functional changes, including altered neurotransmitter production. Here, we sought to establish if OPFRs (triphenyl phosphate and a mixture of isopropylated triarylphosphate isomers) alter placental function and fetal forebrain development, with disruption of tryptophan metabolism as a primary pathway of interest. Wistar rat dams were orally exposed to OPFRs (0, 500, 1000, or 2000 μg/day) or a serotonin (5-HT) agonist 5-methoxytryptamine for 14 days during gestation and placenta and fetal forebrain tissues collected for analysis by transcriptomics and metabolomics. Relative abundance of genes responsible for the transport and synthesis of placental 5-HT were disrupted, and multiple neuroactive metabolites in the 5-HT and kynurenine metabolic pathways were upregulated. In addition, 5-HTergic projections were significantly longer in the fetal forebrains of exposed males. These findings suggest that OPFRs have the potential to impact the 5-HTergic system in the fetal forebrain by disrupting placental tryptophan metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357193PMC
http://dx.doi.org/10.1093/toxsci/kfaa046DOI Listing

Publication Analysis

Top Keywords

flame retardants
12
fetal forebrain
12
organophosphate flame
8
tryptophan metabolism
8
fetal
6
placental
5
opfrs
5
effects prenatal
4
prenatal exposure
4
exposure mixture
4

Similar Publications

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Bioaccumulation of novel brominated flame retardants in a marine food web: A comprehensive analysis of occurrence, trophic transfer, and interfering factors.

Sci Total Environ

January 2025

International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China. Electronic address:

Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China.

View Article and Find Full Text PDF

TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.

View Article and Find Full Text PDF

Occurrence and bioaccumulation of organophosphate flame retardants in high-altitude regions: A comprehensive field survey in Qinghai Province, China.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.

Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices.

View Article and Find Full Text PDF

Halogenated organic compounds in mangrove sediments from Bintan Island, Indonesia: Occurrence, profiles, sources, and potential ecological risk.

Environ Pollut

January 2025

Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan. Electronic address:

The first comprehensive analysis of halogenated organic compounds (HOCs), including 209 full congeners of polychlorinated biphenyls (PCBs), 26 organochlorinated pesticides (OCPs), 41 polybrominated diphenyl ethers (PBDEs), and four other brominated flame retardants (BFRs), was performed on surface mangrove sediments from Bintan Island, Province of the Riau Archipelago, Indonesia. Among the measured HOC contaminants, the mean concentration of ∑PCBs (2.3±0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!