Purpose: A malfunction of the corneal endothelium leading to corneal opacity is one of the main causes of impaired vision. Currently, keratoplasty is the one and only donor cornea-dependent treatment, and this calls for alternatives because of the worldwide lack of donor corneas. Recently, the topography of Descemet membrane (DM) has been discovered as a feasible stem cell differentiation tool. With this study, we further confirm this mechanotransductive system by using preinduced Wharton jelly-derived mesenchymal stem cells (WJ-EPCs).

Methods: To measure the mechanotransductive potential of Descemet-like topography (DLT), WJ-EPCs were cultivated on collagen imprints with DLT. Changes in the gene and protein expressions of corneal endothelial cells (CECs), typical markers such as zonula occludens (ZO-1), sodium/potassium (Na/K)-ATPase, paired-like homeodomain 2 (PITX2), and collagen 8 (COL-8) were measured. In addition, CEC functionality has been evaluated by measuring the relative potential differences in a 2-compartment system and by measuring corneal transparency in an ex vivo rabbit cornea model. To confirm the activity of WJ-EPCs, rabbit CECs were restless deleted by collagen digestion of a thin layer of rabbit Descemet membrane.

Results: The proper CEC-typical hexagonal morphology of WJ-EPCs in combination with a significant expression of ZO-1, Na/K-ATPase, PITX2, and COL-8 could be demonstrated. In addition, the WJ-EPCs were able to build up a relative potential difference of 40 mV and to keep corneas clear and transparent.

Conclusions: These data indicate that a well-characterized, functional CEC monolayer was developed by using a DLT-mediated mechanotransductive differentiation of WJ-EPCs.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ICO.0000000000002319DOI Listing

Publication Analysis

Top Keywords

wharton jelly-derived
8
stem cells
8
relative potential
8
corneal
5
wj-epcs
5
cord eye
4
eye wharton
4
jelly-derived stem
4
cells
4
cells differentiate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!