The emerging brominated flame retardant, 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), has recently attracted strong interest due to its extensive detection in the environment and potential toxicological effects on humans. Previous experiments have shown that the technical mixture of TBECH and the pure β-isomer (β-TBECH) can be metabolized by cytochrome P450 enzymes (CYPs) into multiple metabolites, but the specific CYP isoforms involved in TBECH metabolism and the relevant metabolic regioselectivity remain unknown. Here, we, for the first time, investigated the binding patterns and affinities of β-TBECH in human CYPs 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4, through molecular dynamics (MD) simulations. The binding affinities of β-TBECH in CYPs, which are estimated by the calculated binding free energies, follow the order of 2A6 > 2C9 > 2B6 > 2E1 > 3A4 ≈ 2C19 ≈ 1A2 > 2D6. Although all CYPs are important β-TBECH receptors, only 2A6, 2C19, 2E1, and 3A4 are responsible for metabolizing β-TBECH. Specially, 2A6 and 2E1 may selectively hydroxylate the C and C sites of β-TBECH, while 2C19 and 3A4 show metabolic preference for C- and C-hydroxylations, respectively. The three hydroxylation routes proposed by the further density functional theory (DFT) calculations generate C-, C-, and C-hydroxylated metabolites, while the latter two may further undergo debromination to yield the respective ketone and aldehyde as additional metabolites. The results provide meaningful insight into the binding and metabolism of β-TBECH by human CYPs, which is helpful for understanding the metabolic fate and toxicity mechanism of this chemical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.0c00076 | DOI Listing |
Pharmacol Res Perspect
October 2024
Pharmacy Department, The Affiliated Hospital of Chengdu University of Chinese Medicine, Chengdu, Sichuan, China.
Cytochrome P450 enzymes (CYPs) play a crucial role in phase I metabolic reactions. The activity of CYPs would affect therapeutic efficacy and may even induce toxicity. Given the complex components of traditional Chinese medicine, it is important to understand the effect of active ingredients on CYPs activity to guide their prescription.
View Article and Find Full Text PDFDrug Metab Dispos
October 2024
Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (J.J., L.T.G.N., T.P.R., X.-B.Z.); Departments of Pharmaceutics (A.W.) and Pharmacology and Toxicology (G.L.G.), Ernst Mario School of Pharmacy, and Center of Excellence for Pharmaceutical Translational Research and Education (A.W., R.S.), Rutgers University, Piscataway, New Jersey; Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey (A.W.); and Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas (T.M.S.)
Hepatocyte nuclear factor 4 alpha antisense 1 () is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2024
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China. Electronic address:
Tebuconazole (TEB), a prominent chiral triazole fungicide, has been extensively utilized for plant pathogen control globally. Despite experimental evidence of TEB metabolism in mammals, the enantioselectivity in the biotransformation of R- and S-TEB enantiomers by specific CYP450s remains elusive. In this work, integrated in silico simulations were employed to unveil the binding interactions and enantioselective metabolic fate of TEB enantiomers within human CYP1A2, 2B6, 2E1, and 3A4.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy.
Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction.
View Article and Find Full Text PDFChem Biol Interact
July 2024
Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China. Electronic address:
Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!