Neural stem/progenitor cells (NSCs) maintain the ability of self-renewal and differentiation and compose the complex nervous system. Wnt signaling is thought to control the balance of NSC proliferation and differentiation via the transcriptional coactivator β-catenin during brain development and adult tissue homeostasis. Disruption of Wnt signaling may result in developmental defects and neurological diseases. Here, we summarize recent findings of the roles of Wnt/β-catenin signaling components in NSC homeostasis for the regulation of functional brain circuits. We also suggest that the potential role of Wnt/β-catenin signaling might lead to new therapeutic strategies for neurological diseases, including, but not limited to, spinal cord injury, Alzheimer's disease, Parkinson's disease, and depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1073858420914509 | DOI Listing |
PLoS One
January 2025
Department of Biology, West Virginia State University, Institute, WV, United States of America.
Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114.
Anti-Müllerian hormone (AMH) protects the ovarian reserve from chemotherapy, and this effect is most pronounced with Doxorubicin (DOX). However, DOX toxicity and AMH rescue mechanisms in the ovary have remained unclear. Herein, we characterize the consequences of these treatments in ovarian cell types using scRNAseq.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien.
Leucine-rich repeat-containing G-protein-coupled receptors regulate stem cell activity and tissue homeostasis within female reproductive organs, primarily through their interaction with the Wnt/β-catenin signaling pathway. LGR4-6 are increasingly recognized for their roles in organ development, regeneration, and cancer. This review aims to provide a comprehensive overview of the roles of LGR4-6 in female reproductive organs, highlighting their significance in normal physiology and disease states, specifically in the context of ovarian cancer.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China.
Introduction: Melanoma (MM), the deadliest form of skin cancer, originates from melanocytes. Despite advances in immunotherapy that have somewhat improved the prognosis for MM patients, high levels of resistance to treatment continue to result in poor clinical outcomes. Identifying novel biomarkers and therapeutic targets is critical for improving the prognosis and treatment of MM.
View Article and Find Full Text PDFFront Oncol
January 2025
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!