Methanol is a promising chemical for the safe and efficient storage of hydrogen, where methanol conversion reactions can generate a hydrogen-containing gas mixture. Understanding the chemical state of the catalyst over which these reactions occur and the interplay with the adsorbed species present is key to the design of improved catalysts and process conditions. Here we study polycrystalline Cu foils using ambient pressure X-ray spectroscopies to reveal the Cu oxidation state and identify the adsorbed species during partial oxidation (CHOH + O), steam reforming (CHOH + HO), and autothermal reforming (CHOH + O + HO) of methanol at 200 °C surface temperature and in the mbar pressure range. We find that the Cu surface remains highly metallic throughout partial oxidation and steam reforming reactions, even for oxygen-rich conditions. However, for autothermal reforming the Cu surface shows significant oxidation towards CuO. We rationalise this behaviour on the basis of the shift in equilibrium of the CHOH* + O* ⇌ CHO* + OH* reaction step caused by the addition of HO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00347f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!