Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The detection and identification of cigarette ash in fire debris can be meaningful in fire investigations caused by burning cigarettes. In this work, a novel analytical method based on negative chemical ionization time-of-flight mass spectrometry (NCI/TOFMS) combined with a phosphoric-acid-enhanced evaporation strategy has been developed for the discrimination of cigarette ash samples (CAs) and common household decoration material ash samples (CHDMAs). A series of characteristic ions representing the acidified products HNCO and formic acid in the CAs were achieved, whose signal responses were enhanced with the help of mechanical agitation operation. To account for both the signal responses of the characteristic ions and acid corrosion of the ion source, the dynamic-purge gas was chosen to be 200 mL/min. The whole time for analysis was only 5 min, which is suitable for high-throughput measurements of large quantities of fire debris. As a result, a preliminary discrimination was achieved between the CAs and CHDMAs by virtue of the chemometric tool of principal components analysis (PCA) based on intensity differences of the characteristic ions. The results are encouraging and highlight the potential of NCI/TOFMS without complicated sample preparation steps for the accurate and high-throughput identification of cigarette ash on substrates in fire debris.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118106 | PMC |
http://dx.doi.org/10.1038/s41598-020-62814-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!