The capability of differentiating between various emotional states in speech displays a crucial prerequisite for successful social interactions. The aim of the present study was to investigate neural processes underlying this differentiating ability by applying a simultaneous neuroscientific approach in order to gain both electrophysiological (via electroencephalography, EEG) and vascular (via functional near-infrared-spectroscopy, fNIRS) responses. Pseudowords conforming to angry, happy, and neutral prosody were presented acoustically to participants using a passive listening paradigm in order to capture implicit mechanisms of emotional prosody processing. Event-related brain potentials (ERPs) revealed a larger P200 and an increased late positive potential (LPP) for happy prosody as well as larger negativities for angry and neutral prosody compared to happy prosody around 500 ms. FNIRS results showed increased activations for angry prosody at right fronto-temporal areas. Correlation between negativity in the EEG and activation in fNIRS for angry prosody suggests analogous underlying processes resembling a negativity bias. Overall, results indicate that mechanisms of emotional and phonological encoding (P200), emotional evaluation (increased negativities) as well as emotional arousal and relevance (LPP) are present during implicit processing of emotional prosody.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118077 | PMC |
http://dx.doi.org/10.1038/s41598-020-62761-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!