Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct -regulatory elements for in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing and Although these mutants survive postnatally, at ∼3-5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197352PMC
http://dx.doi.org/10.1101/gad.332577.119DOI Listing

Publication Analysis

Top Keywords

levels ptf1a
8
dorsal spinal
8
spinal cord
8
inhibitory neurons
8
neuronal circuits
8
positive autofeedback
4
autofeedback regulation
4
regulation transcription
4
transcription generates
4
generates levels
4

Similar Publications

Objective: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy because it is often diagnosed at a late-stage. Signal transducer and activator of transcription 5 (STAT5) is a transcription factor implicated in the progression of various cancer types. However, its role in KRAS-driven pancreatic tumourigenesis remains unclear.

View Article and Find Full Text PDF

The Cre-lox system is an indispensable tool in neuroscience research for targeting gene deletions to specific cellular populations. Here we assess the utility of several transgenic lines, along with a viral approach, for targeting cerebellar Purkinje cells (PCs) in mice. Using a combination of a fluorescent reporter line () to indicate -mediated recombination and a floxed Dystroglycan line ( ), we show that reporter expression does not always align precisely with loss of protein.

View Article and Find Full Text PDF

The Cre-lox system is an indispensable tool in neuroscience research for targeting gene deletions to specific cellular populations. Here we assess the utility of several transgenic lines, along with a viral approach, for targeting cerebellar Purkinje cells. Using a combination of a fluorescent reporter line () to indicate -mediated recombination and a floxed line () we show that reporter expression does not always align precisely with loss of protein.

View Article and Find Full Text PDF

Key transcriptional effectors of the pancreatic acinar phenotype and oncogenic transformation.

PLoS One

November 2023

Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.

Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs.

View Article and Find Full Text PDF

Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS as well as its target MAPK pathway effectors have shown limited success due to the difficulty to pharmacologically target KRAS, inherent drug resistance in PDAC cells, and acquired resistance through activation of alternative mitogenic pathways such JAK-STAT and PI3K-AKT. While KRAS canonically drives the MAPK signaling pathway via RAF-MEK-ERK, it is also known to play a role in PI3K-AKT signaling. Our therapeutic study targeted the PI3K-AKT pathway with the drug Omipalisib (p110α/β/δ/γ and mTORC1/2 inhibitor) in combination with MAPK pathway targeting drug Trametinib (MEK1/2 inhibitor) or SHP099-HCL (SHP099), which is an inhibitor of the KRAS effector SHP2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!