A20 is a potent anti-inflammatory molecule, and mutations in TNFAIP3, the gene encoding A20, are associated with a wide panel of inflammatory pathologies, both in human and mouse. The anti-inflammatory properties of A20 are commonly attributed to its ability to suppress inflammatory NF-κB signaling by functioning as a ubiquitin-editing enzyme. However, A20 also protects cells from death, independently of NF-κB regulation, and recent work has demonstrated that cell death may drive some of the inflammatory conditions caused by A20 deficiency. Adding to the fact that the protective role of A20 does not primarily rely on its catalytic activities, these findings shed new light on A20 biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.it.2020.03.001 | DOI Listing |
Clin Pharmacol Drug Dev
January 2025
Allergy & Asthma Solutions, Coto de Caza, CA, USA.
The primary objective of the study was to determine the bioavailability of 2 new formulations of azelastine (AZE) hydrochloride (0.10% and 0.15% AZE) containing sorbitol and sucralose compared with the commercially available 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer, Heze University, No.2269, Daxue Road, Heze, 274015, Shandong, China.
A switching active disturbance rejection control (SADRC) strategy was proposed to solve the composite disturbance challenge arising from gap, LuGre friction, hydraulic spring force, and external load disturbance in the double closed-loop digital hydraulic cylinder position control system. Firstly, leveraging the established mathematical model of the double closed-loop digital hydraulic cylinder, the high-order state equation was derived. Subsequently, the high-order double closed-loop digital hydraulic cylinder control system was transformed into a second-order integral series control system using ADRC strategy.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Laboratory of Immunoendocrinology Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Structural Engineering, Mansoura University, PO BOX 35516, Mansoura, Egypt.
A novel type of concrete-encased steel (CES) composite column implementing Engineered Cementitious Composites (ECC) confinement (ECC-CES) has recently been introduced, offering significantly enhanced failure behavior, ductility, and toughness when compared to conventional CES columns. This study presents an innovative method for predicting the eccentric compressive capacity of ECC-CES columns, utilizing adaptive sampling and machine learning (ML) techniques. Initially, the research introduces a finite element (FE) model for ECC-CES columns, incorporating material and geometric nonlinearities to capture the inelastic behavior of both ECC and steel through appropriate constitutive material laws.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!