Thermo-mechanical properties and blend behaviour of cellulose acetate/lactates and acid systems: Natural-based plasticizers.

Carbohydr Polym

Solvay in Axel'One, 87 avenue des Frères Perret CS 70061, F-69192, Saint-Fons, France. Electronic address:

Published: June 2020

This work brings together thermo-mechanical and structural information for plasticized cellulose acetate (CA) by lactates and octanoic acid. CA are processed with plasticizer due to their high Tg and their strong H-bonding network. We prepared CA / plasticizer blends by corotative twin screw extruder and by solvent casting methods. The study of the different relaxations and of the glassy zone modulus was performed by dynamic mechanical analysis (DMA). The miscibility range of cellulose acetate blends were identified by the analysis of the tan δ. Depending on the composition of the system, one or two transitions are noted, this last result indicates the presence of a phase rich in CA and another in plasticizer. To connect this information to crystallinity and molecular organization, X-ray diffraction analyses were carried out. The disappearance of crystallinity allows the plasticization of previously inaccessible zones, causing a glassy modulus drop of more than 1000 MPa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116072DOI Listing

Publication Analysis

Top Keywords

cellulose acetate
8
thermo-mechanical properties
4
properties blend
4
blend behaviour
4
behaviour cellulose
4
cellulose acetate/lactates
4
acetate/lactates acid
4
acid systems
4
systems natural-based
4
natural-based plasticizers
4

Similar Publications

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Exploring cigarette butts pollution in Vung Tau beaches: A case study in Vietnam.

Mar Pollut Bull

January 2025

Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea. Electronic address:

Cigarette butts (CBs), alongside other plastic items, are widely recognized as a significant source of marine litter in coastal areas worldwide. This research is the first to examine CB pollution, offering valuable insights into its impact across various beaches in Vung Tau, Vietnam. A total of 512 CBs were collected, with an average density of 0.

View Article and Find Full Text PDF

Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Cellulose Acetate Butyrate-Based In Situ Gel Comprising Doxycycline Hyclate and Metronidazole.

Polymers (Basel)

December 2024

Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.

Cellulose acetate butyrate is a biodegradable cellulose ester bioplastic produced from plentiful natural plant-based resources. Solvent-exchange-induced in situ gels are particularly promising for periodontitis therapy, as this dosage form allows for the direct delivery of high concentrations of antimicrobial agents to the localized periodontal pocket. This study developed an in situ gel for periodontitis treatment, incorporating a combination of metronidazole and doxycycline hyclate, with cellulose acetate butyrate serving as the matrix-forming agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!