Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly ( < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370005PMC
http://dx.doi.org/10.1177/0271678X20915127DOI Listing

Publication Analysis

Top Keywords

differences mitochondrial
8
cerebral microvessels
8
sexual differences
4
proteins
4
mitochondrial proteins
4
proteins rat
4
rat cerebral
4
microvessels proteomic
4
proteomic approach
4
approach sex
4

Similar Publications

infection in captive non-human primates in zoological gardens in Spain.

J Helminthol

January 2025

Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain.

Currently, there is limited available information on the epidemiology of parasitic infections in captive non-human primates (NHPs) and their zoonotic potential. However, numerous cases of helminth infections in NHPs have been documented in several zoos around the world, with one of the most prevalent being those of the genus The main objective of this study is to investigate the occurrence of infection by spp. in primates from zoological gardens in Spain and to ascertain, at the species level, the specific species harbored by these hosts by using mitochondrial and ribosomal markers.

View Article and Find Full Text PDF

Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.

View Article and Find Full Text PDF

Coenzyme Q2 (CoQ2) mutations are a group of autosomal recessive mitochondria-linked diseases that result in coenzyme Q10 (CoQ10) deficiency (CoQ10: a cofactor in mitochondrial energy production). Its deficiency leads to multiple systemic clinical presentations; however, isolated steroid-resistant nephrotic syndrome (SRNS) is considerably rare. Multiple genetic mutations have been reported with different ranges of severity and prognosis, with variable responses to CoQ10 supplementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!