The size and affinity effect of counterions on self-assembly of charged block copolymers.

J Chem Phys

Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, People's Republic of China.

Published: March 2020

The effect of counterions' size and affinity on the microphase separated morphologies of neutral-charged diblock copolymers is investigated systematically using a random phase approximation (RPA) and self-consistent field theory (SCFT). The phase diagrams as a function of χ and f at different counterion sizes and different affinities to neutral blocks are constructed, respectively. Stability limits calculated using the RPA are in good agreement with the disorder-body-centered cubic phase boundaries from SCFT calculations. It was found that increasing the size of counterions causes the phase diagram to shift upward and leftward, which is attributed to electrostatic interactions and the intrinsic volume of counterions. The domain size of the ordered phase shows an unexpected tendency that it decreases with increasing counterions' size. The counterions' distributions in H and G phases demonstrate that it is electrostatic interaction, instead of packing frustration, that plays a leading role in such systems. For finite size counterions, with the increase in affinity between counterions and neutral blocks, the phase diagram shifts upward, indicating the improved compatibility between different blocks. Furthermore, the affinity effect between counterions and neutral blocks can be mapped into an effective Flory parameter χ = χ + 0.27χ.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0002896DOI Listing

Publication Analysis

Top Keywords

affinity counterions
12
neutral blocks
12
size affinity
8
counterions' size
8
size counterions
8
phase diagram
8
counterions neutral
8
size
6
counterions
6
phase
6

Similar Publications

Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.

View Article and Find Full Text PDF

The solvation of Na ions by ethoxylate moieties enhances adsorption of sulfonate surfactants at the air-water interface.

J Colloid Interface Sci

March 2025

Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom; School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, United States. Electronic address:

Hypothesis: Experiments show pronounced synergy in the reduction of surface tension when the nonionic surfactant Poly(oxy-1,2-ethanediyl), .alpha.-tris(1-phenylethyl)phenyl-.

View Article and Find Full Text PDF

Driving Forces in the Formation of Biocondensates of Highly Charged Proteins: A Thermodynamic Analysis of the Binary Complex Formation.

Biomolecules

November 2024

Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany.

Article Synopsis
  • The study focuses on the interaction between the positively charged linker histone H1 and the negatively charged chaperone prothymosin α (ProTα), highlighting their strong binding in physiological conditions.
  • The analysis employs a thermodynamic model that considers the influence of counterion release and hydration on the complex formation.
  • The findings reveal that the binding energy is primarily driven by the release of counterions from ProTα, while changes in water interactions and conformational constraints contribute to a significant negative change in free energy.
View Article and Find Full Text PDF

Cholesterol modulates the interaction of sodium salt with negatively charged phospholipid membrane.

Biophys Chem

February 2025

Soft matter and Biophysics Laboratory, Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata 700032, India. Electronic address:

We present a systematic study on how alkali metal salts, like NaCl and NaI, affect negatively charged phospholipid vesicles using a range of experimental methods. Our goal was to find out how chain saturation and cholesterol affect the interaction between the ions and the membrane. An isothermal titration calorimetry study on large unilamellar vesicles made from dimyristoyl phosphatidylcholine (DMPC) revealed that Na shows higher binding affinity to the gel phase at 15 °C compared to the fluid phase at 30 °C.

View Article and Find Full Text PDF

Relationship between Molecular Structure and Surface Activity of Ionic Surfactants.

J Phys Chem B

November 2024

The Discipline of Chemical Engineering, WASM: MECE, Curtin University, Perth WA 6845, Australia.

Article Synopsis
  • * The model effectively identifies how the chemical structure of surfactants, particularly chain length and type of counterions, influences their surface activity.
  • * It also provides insights into long-standing observations in surfactant behavior and can be adapted for more complex surfactant systems and mixtures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!