The effect of counterions' size and affinity on the microphase separated morphologies of neutral-charged diblock copolymers is investigated systematically using a random phase approximation (RPA) and self-consistent field theory (SCFT). The phase diagrams as a function of χ and f at different counterion sizes and different affinities to neutral blocks are constructed, respectively. Stability limits calculated using the RPA are in good agreement with the disorder-body-centered cubic phase boundaries from SCFT calculations. It was found that increasing the size of counterions causes the phase diagram to shift upward and leftward, which is attributed to electrostatic interactions and the intrinsic volume of counterions. The domain size of the ordered phase shows an unexpected tendency that it decreases with increasing counterions' size. The counterions' distributions in H and G phases demonstrate that it is electrostatic interaction, instead of packing frustration, that plays a leading role in such systems. For finite size counterions, with the increase in affinity between counterions and neutral blocks, the phase diagram shifts upward, indicating the improved compatibility between different blocks. Furthermore, the affinity effect between counterions and neutral blocks can be mapped into an effective Flory parameter χ = χ + 0.27χ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0002896 | DOI Listing |
Front Physiol
December 2024
Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Department of Chemical Engineering, University College London, Torrington Place WC1E 7JE, London, United Kingdom; School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, United States. Electronic address:
Hypothesis: Experiments show pronounced synergy in the reduction of surface tension when the nonionic surfactant Poly(oxy-1,2-ethanediyl), .alpha.-tris(1-phenylethyl)phenyl-.
View Article and Find Full Text PDFBiomolecules
November 2024
Institut für Chemie und Biochemie, Freie Universität Berlin, Forschungsbau SupraFab, Altensteinstrasse 23a, 14195 Berlin, Germany.
Biophys Chem
February 2025
Soft matter and Biophysics Laboratory, Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata 700032, India. Electronic address:
We present a systematic study on how alkali metal salts, like NaCl and NaI, affect negatively charged phospholipid vesicles using a range of experimental methods. Our goal was to find out how chain saturation and cholesterol affect the interaction between the ions and the membrane. An isothermal titration calorimetry study on large unilamellar vesicles made from dimyristoyl phosphatidylcholine (DMPC) revealed that Na shows higher binding affinity to the gel phase at 15 °C compared to the fluid phase at 30 °C.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
The Discipline of Chemical Engineering, WASM: MECE, Curtin University, Perth WA 6845, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!