Enhanced transcutaneous electrical nerve stimulation achieved by a localized virtual bipole: a computational study of human tibial nerve stimulation.

J Neural Eng

Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, Ontario M5S 3G9, Canada.

Published: May 2020

Objective: Electrical neuromodulation is a clinically effective therapeutic instrument, currently expanding into newer indications and larger patient populations. Neuromodulation technologies are also moving towards less invasive approaches to nerve stimulation. In this study, we investigated an enhanced transcutaneous electrical nerve stimulation (eTENS) system that electrically couples a conductive nerve cuff with a conventional TENS electrode. The objectives were to better understand how eTENS achieves lower nerve activation thresholds, and to test the feasibility of applying eTENS in a human model of peripheral nerve stimulation.

Approach: A finite element model (FEM) of the human lower leg was constructed to simulate electrical stimulation of the tibial nerve, comparing TENS and eTENS. Key variables included surface electrode diameter, nerve cuff properties (conductivity, length, thickness), and cuff location. Enhanced neural excitability was predicted by relative excitability (RE > 1), derived using either the activating function (AF) or the nerve activation threshold (MRG model).

Main Results: Simulations revealed that a localized 'virtual bipole' was created on the target nerve, where the isopotential surface of the cuff resulted in large potential differences with the surrounding tissue. The cathodic part (nerve depolarization) of the bipole enhanced neural excitability, predicted by RE values of up to 2.2 (MRG) and 5.5 (AF) when compared to TENS. The MRG model confirmed that action potentials were initiated at the cathodic edge of the nerve cuff. Factors contributing to eTENS were larger surface electrodes, longer cuffs, cuff conductivity (>1×10 S m), and cuff position relative to the cathodic surface electrode.

Significance: This study provides a theoretical basis for designing and testing eTENS applied to various neural targets and data suggesting function of eTENS in large models of nerve stimulation. Although eTENS carries key advantages over existing technologies, further work is needed to translate this approach into effective clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ab85d3DOI Listing

Publication Analysis

Top Keywords

nerve stimulation
20
nerve
14
nerve cuff
12
enhanced transcutaneous
8
transcutaneous electrical
8
electrical nerve
8
tibial nerve
8
etens
8
stimulation etens
8
nerve activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!