Methods for ChIP-seq analysis: A practical workflow and advanced applications.

Methods

Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. Electronic address:

Published: March 2021

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a central method in epigenomic research. Genome-wide analysis of histone modifications, such as enhancer analysis and genome-wide chromatin state annotation, enables systematic analysis of how the epigenomic landscape contributes to cell identity, development, lineage specification, and disease. In this review, we first present a typical ChIP-seq analysis workflow, from quality assessment to chromatin-state annotation. We focus on practical, rather than theoretical, approaches for biological studies. Next, we outline various advanced ChIP-seq applications and introduce several state-of-the-art methods, including prediction of gene expression level and chromatin loops from epigenome data and data imputation. Finally, we discuss recently developed single-cell ChIP-seq analysis methodologies that elucidate the cellular diversity within complex tissues and cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2020.03.005DOI Listing

Publication Analysis

Top Keywords

chip-seq analysis
12
analysis
6
methods chip-seq
4
analysis practical
4
practical workflow
4
workflow advanced
4
advanced applications
4
applications chromatin
4
chromatin immunoprecipitation
4
immunoprecipitation sequencing
4

Similar Publications

Hepatocellular carcinoma (HCC) is characterized by a poor prognosis globally. PAX-interacting protein 1 (PAXIP1) serves a key role in the development of numerous human cancer types. Nevertheless, its specific involvement in HCC remains poorly understood.

View Article and Find Full Text PDF

The complex gene regulatory landscape underlying early flower development in Arabidopsis has been extensively studied through transcriptome profiling, and gene networks controlling floral organ development have been derived from the analyses of genome wide binding of key transcription factors. In contrast, the dynamic nature of the proteome during the flower development process is much less understood. In this study, we characterized the floral proteome at different stages during early flower development and correlated it with unbiased transcript expression data.

View Article and Find Full Text PDF

Integrating Single-Cell RNA-Seq and ATAC-Seq Analysis Reveals Uterine Cell Heterogeneity and Regulatory Networks Linked to Pimpled Eggs in Chickens.

Int J Mol Sci

December 2024

Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.

Pimpled eggs have defective shells, which severely impacts hatching rates and transportation safety. In this study, we constructed single-cell resolution transcriptomic and chromatin accessibility maps from uterine tissues of chickens using single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq). We identified 11 major cell types and characterized their marker genes, along with specific transcription factors (TFs) that determine cell fate.

View Article and Find Full Text PDF

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

Progesterone receptors (PR) can regulate transcription by RNA Polymerase III (Pol III), which transcribes small non-coding RNAs, including all transfer RNAs (tRNAs). We have previously demonstrated that PR is associated with the Pol III complex at tRNA genes and that progestins downregulate tRNA transcripts in breast tumor models. To further elucidate the mechanism of PR-mediated regulation of Pol III, we studied the interplay between PR, the Pol III repressor Maf1, and TFIIIB, a core transcription component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!