A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A systematic review and external validation of stroke prediction models demonstrates poor performance in dialysis patients. | LitMetric

Objectives: The objective of this study was to systematically review and externally assess the predictive performance of models for ischemic stroke in incident dialysis patients.

Study Design And Setting: Two reviewers systematically searched and selected ischemic stroke models. Risk of bias was assessed with the PROBAST. Predictive performance was evaluated within The Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD), a large prospective multicenter cohort of incident dialysis patients. For discrimination, c-statistics were calculated; calibration was assessed by plotting predicted and observed probabilities for stroke, and calibration-in-the-large.

Results: Seventy-seven prediction models for stroke were identified, of which 15 were validated. Risk of bias was high, with all of these models scoring high risk in one or more domains. In NECOSAD, of the 1,955 patients, 127 (6.5%) suffered an ischemic stroke during the follow-up of 2.5 years. Compared with the original studies, most models performed worse with all models showing poor calibration and discriminative abilities (c-statistics ranging from 0.49 to 0.66). The Framingham showed reasonable calibration; however, with a c-statistic of 0.57 (95% CI 0.50-0.63), the discrimination was poor.

Conclusion: This external validation demonstrates the weak predictive performance of ischemic stroke models in incident dialysis patients. Instead of using these models in this fragile population, either existing models should be updated, or novel models should be developed and validated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jclinepi.2020.03.015DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
16
dialysis patients
12
predictive performance
12
incident dialysis
12
models
11
external validation
8
prediction models
8
stroke models
8
risk bias
8
stroke
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!