Increasing evidence suggests that circular RNAs are emerging biomarkers or targets for early cancer diagnosis and treatment. However, the studies of circular RNA in osteosarcoma (OS) are limited. In this study we found that circ_ARF3 were highly expressed in osteosarcoma cell lines and tumor tissues. Knocking down circ_ARF3 greatly ceased OS cell growth, impaired cell colony formation and halted cell cycle transition from G1 to S phase. Bioinformatic analysis suggested that miR-1299 is the target of circ_ARF3. Luciferase assay and biotin labeled circ_ARF3 pull down assay confirmed their interactions in OS cells. The regulatory roles of circ_ARF3 on miR-1299 was also investigated. Further bioinformatic analysis showed that CDK6 is the target of miR-1299. Overexpressing miR-1299 in OS cells decreased CDK6 expression and arrested OS cell growth and cell cycle progression. However, the roles of miR-1299 in regulating CDK6 expression, OS cell growth and cell cycle progression were greatly impaired in the presence of circ_ARF3. In general, our study demonstrated that in the OS, highly expressed circ_ARF3 acts as a sponge of miR-1299 to inhibit miR-1299 mediated CDK6 downregulation which further promoted OS pathogenesis. circ_ARF3 could be a potential target for OS treatment in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2020.109622 | DOI Listing |
Sci Rep
December 2024
Chinese Medicine Guangdong Laboratory, Hengqin, 519031, Guangdong, China.
HR/HER2-low breast cancer is a significant subgroup of conventional HR/HER2-negative breast cancer, and combination of CDK4/6 inhibitor and endocrine therapy is the standard first-line and second-line treatments for advanced HR/HER2-low breast cancer. Nevertheless, it remains uncertain whether HER2 signaling affects the effectiveness of CDK4/6 inhibitor administered in combination with endocrine therapy for HR/HER2-low breast cancer and suitable intervention measures. This study revealed poor efficacy for CDK4/6 inhibitor combined with endocrine therapy for HR/HER2-low breast cancer in vitro and in vivo models.
View Article and Find Full Text PDFDiseases
December 2024
Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan.
Objectives: Cyclosporine A promotes gingival fibrosis by enhancing the proliferation of gingival fibroblasts, leading to gingival overgrowth. The population of gingival fibroblasts is regulated by cell cycle machinery, which balances cell growth and inhibition. Cells that detect DNA damage pause at the G1/S checkpoint to repair the damage instead of progressing to the S phase.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi, 330006, China.
In clinical settings, glioma patients often develop secondary resistance to first-line chemotherapy drugs. Vincristine has been reported for its application in cancer chemotherapy, but its molecular mechanism of action remains unclear. This study aimed to identify potential targets of vincristine in glioma using network pharmacology and to experimentally validate the possible molecular mechanisms against glioma.
View Article and Find Full Text PDFBioData Min
December 2024
Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
Objectives: Bladder cancer (BLCA) is a tumor that affects men more than women. The biological function and prognostic value of androgen-responsive genes (ARGs) in BLCA are currently unknown. To address this, we established an androgen signature to determine the prognosis of BLCA.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box 15468-15514, Tehran, Iran.
Background: The progression of leukemia is substantially associated with the interactions of leukemic cells with surrounding cells within the bone marrow microenvironment (BMM), and these interactions were facilitated using exosomes as vital mediators. The current study aimed to examine the proliferative effects of exosomes derived from the HL-60 cell line, a representative of acute myeloblastic leukemia (AML), on the cell cycle progression of human bone marrow mesenchymal stromal cells (hBM-MSCs), a key element of the BMM.
Methods And Results: hBM-MSCs were treated with different concentrations of AML-derived exosomes from the HL-60 cell line.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!