A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low-pressure fluid percussion minimally adds to the sham craniectomy-induced neurobehavioral changes: Implication for experimental traumatic brain injury model. | LitMetric

AI Article Synopsis

  • Modeling traumatic brain injury (TBI) in rodents is crucial for understanding its effects, and fluid percussion injury (FPI) is commonly used, but the requirement for a craniectomy complicates results.
  • Researchers hypothesized that the craniectomy itself could produce effects similar to mild FPI, and their study showed that both procedures led to significant changes in the brain's structure and function, including increased neurogenesis and neuroinflammation.
  • The findings suggest that craniectomy alone can mimic TBI characteristics, indicating that the impacts of FPI may be less pronounced when combined with craniectomy, thus highlighting the need to compare results with a naïve control group for accurate assessments.

Article Abstract

Modeling experimental traumatic brain injury (TBI) in rodents is necessarily required to understand the pathophysiological and neurobehavioral consequences of neurotrauma. Numerous models have been developed to study experimental TBI. Fluid percussion injury (FPI) is the most extensively used model to represent clinical phenotypes. Nevertheless, the surgical 'sham' procedure (craniectomy), a prerequisite of FPI, is the impeding factor in experimental TBI. We hypothesized that if craniectomy causes substantial structural and functional changes in the brain, it might mimic the mild FPI-induced neurobehavioral dysfunctions. To understand the hypothesis, C57BL/6 mice were exposed to lateral FPI at 1.2 atm pressure and changes in the neuronal architecture, hippocampal neurogenesis, neuroinflammation, and behavioral functions were compared to the sham (craniectomy) and control mice at day 7 post-FPI. We observed that both the craniectomy and FPI significantly augmented the ipsilateral hippocampal neurogenesis as evaluated by DCX and Beta-III tubulin immunoreactivity. Similarly, a significant increase in GFAP and TMEM immunoreactivity in CA1 and CA3 regions showed that craniectomy mimics FPI-induced neuroinflammation. The additive damaging effect of craniectomy with FPI was also reported in the term of axonal and dendritic fragmentation, swelling and neuronal death using silver staining, Fluoro-jade, and MAP-2 immunoreactivity. Sham-exposed mice showed a significant functional decrease in grip strength. Our results indicate that sham craniectomy itself is enough to cause TBI like characteristics, and thus fluid percussion at mild pressure is minimally additive with craniectomy. Considering the method as a mixed (focal & diffused) injury model, the 'net neurotrauma severity' should be compared with naïve control instead of the sham as it is an outcome of cumulative damage due to fluid pressure and craniectomy. Nevertheless, to understand the long term consequences of neurotrauma, the extent of recovery in surgical sham may separately be quantified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2020.113290DOI Listing

Publication Analysis

Top Keywords

fluid percussion
12
craniectomy
9
experimental traumatic
8
traumatic brain
8
brain injury
8
injury model
8
consequences neurotrauma
8
experimental tbi
8
hippocampal neurogenesis
8
sham craniectomy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!