Gauge Fixing for Heat-Transport Simulations.

J Chem Theory Comput

SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy.

Published: May 2020

Thermal and other transport coefficients were recently shown to be largely independent of the microscopic representation of the energy (current) densities or, more generally, of the relevant conserved densities/currents. In this Article, we show how this , which is intimately related to the intrinsic indeterminacy of the energy of individual atoms in interacting systems, can be exploited to optimize the statistical properties of the current time series from which the transport coefficients are evaluated. To this end, we introduce and exploit a variational principle that relies on the metric properties of the conserved currents, treated as elements of an abstract linear space. Different metrics would result in different variational principles. In particular, we show that a recently proposed data-analysis technique based on the theory of transport in multicomponent systems can be recovered by a suitable choice of this metric.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b01174DOI Listing

Publication Analysis

Top Keywords

transport coefficients
8
gauge fixing
4
fixing heat-transport
4
heat-transport simulations
4
simulations thermal
4
thermal transport
4
coefficients independent
4
independent microscopic
4
microscopic representation
4
representation energy
4

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

The thermodynamic properties of frozen soil depend on its temperature state and ice content. Additionally, the permeability coefficient significantly affects both the temperature distribution and water movement. In this study, the dynamic variation of soil permeability coefficient with temperature is considered, the permeability coefficient is defined as a piecewise function with temperature as independent variable, and the hydrothermal coupling equation is established.

View Article and Find Full Text PDF

To investigate the therapeutic effect of Fuzheng Tongluo Granules on idiopathic pulmonary fibrosis(IPF) and its mechanism. Seventy-two SD rats were randomly divided into the control group, model group, pirfenidone group(162 mg·kg~(-1)), and low-, medium-and high-dose of Fuzheng Tongluo Granules groups(2.63, 5.

View Article and Find Full Text PDF

Unraveling the Meaning of Effective Uptake Coefficients in Multiphase and Aerosol Chemistry.

Acc Chem Res

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!