Increasing the Ni content of LiNiMnCoO (NMC) cathodes can increase the capacity, but additional stability is needed to improve safety and longevity characteristics. In order to achieve this improved stability, Mg and Zr were added during the coprecipitation to uniformly dope the final cathode material. These dopants reduced the capacity of the material to some extent, depending on the concentration and calcination temperature. However, these dopants can impart substantial stabilization. It was found that the degree of stabilization is strongly dependent on the calcination temperature of the material. In addition, we used synchrotron X-ray diffraction during thermal breakdown to better understand why the different dopants impact the thermal stability and confirm the stabilization effects of the dopants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c01448DOI Listing

Publication Analysis

Top Keywords

thermal stability
8
calcination temperature
8
improving thermal
4
stability
4
stability nmc
4
nmc 622
4
622 li-ion
4
li-ion battery
4
battery cathodes
4
cathodes doping
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!