Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379300PMC
http://dx.doi.org/10.1002/ecy.3052DOI Listing

Publication Analysis

Top Keywords

basal area
28
strength competition
20
wood density
16
competition
12
growth mortality
12
tropical forests
12
tree size
12
neighborhood crowding
12
water availability
12
soil fertility
12

Similar Publications

Preservation and early evolution of scalidophoran ventral nerve cord.

Sci Adv

January 2025

State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China.

Ecdysozoan worms (Nematoida + Scalidophora) are typified by disparate grades of neural organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct the early character evolution of the nervous system via the exceptional preservation of extinct representatives. We focus on their nervous system as it appears in early and mid-Cambrian fossils.

View Article and Find Full Text PDF

Basal cell carcinoma is the most common skin malignancy and constitutes a burden for patients and society. Mohs micrographic surgery is a recommended treatment for high-risk basal cell carcinoma, but long-term outcomes of Mohs micrographic surgery in Denmark are unknown. This study aimed to estimate the 5-year recurrence rate of basal cell carcinoma following Mohs micrographic surgery, and to investigate patient and procedure characteristics since the introduction of the procedure in Denmark.

View Article and Find Full Text PDF

Spatiotemporal distribution of global peatland area during the Holocene.

Sci Data

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.

Peatlands are a key component of terrestrial ecosystems, and their development has an important impact on global carbon cycle and climate change. However, the long-term evolution of global peatlands remains uncertain, particularly their spatial distribution. We compiled 4700 basal peatland data during Holocene, and 669 pollen data of Sphagnum with basal and end ages, to allow a more robust reconstruction of the spatial distribution of peatlands.

View Article and Find Full Text PDF

A novel bombesin-related peptide modulates glucose tolerance and insulin secretion in non-obese and hypothalamic-obese rats.

Toxicon

January 2025

Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Biociências e Saúde (PPG-BCS) - Cascavel, Brazil. Electronic address:

This study investigated the effects of a novel bombesin-related peptide (BR-b), derived from the skin of the Chaco tree frog (Boana raniceps), on glucose homeostasis in non-obese and hypothalamic-obese male rats. Hypothalamic obesity was induced in neonatal rats through high-dose administration of monosodium glutamate (MSG; 4 g/kg), while control animals (CTL) received an equimolar saline solution. At 70 days of age, both MSG and CTL groups underwent an oral glucose tolerance test (OGTT; 2 g/kg) with or without prior intraperitoneal administration of BR-b at doses of 0.

View Article and Find Full Text PDF

Purpose: Bypass surgery is regarded as the standard treatment option for symptomatic and hemodynamically unstable moyamoya disease (MMD). However, there is ongoing debate about the most effective type of bypass surgery. We aimed to analyze the long-term outcomes of combined and indirect bypasses for MMD patients through intra-individual comparisons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!