Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades.

Am J Bot

Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.

Published: April 2020

Premise: Mountain ecosystems are particularly sensitive to climate change. However, only a very small number of studies exist so far using annually resolved records of alpine plant growth spanning the past century. Here we aimed to identify the effects of heat waves and drought, driven by global warming, on annual radial growth of Rhododendron ferrugineum.

Methods: We constructed two century-long shrub ring-width chronologies from R. ferrugineum individuals on two adjacent, north- and west-facing slopes in the southern French Alps. We analyzed available meteorological data (temperature, precipitation and drought) over the period 1960-2016. Climate-growth relationships were evaluated using bootstrapped correlation functions and structural equation models to identify the effects of rising temperature on shrub growth.

Results: Analysis of meteorological variables during 1960-2016 revealed a shift in the late 1980s when heat waves and drought increased in intensity and frequency. In response to these extreme climate events, shrubs have experienced significant changes in their main limiting factors. Between 1960 and 1988, radial growth on both slopes was strongly controlled by the sum of growing degree days during the snow free period. Between 1989 and 2016, August temperature and drought have emerged as the most important.

Conclusions: Increasing air temperatures have caused a shift in the growth response of shrubs to climate. The recently observed negative effect of high summer temperature and drought on shrub growth can, however, be buffered by topographic variability, supporting the macro- and microrefugia hypotheses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1459DOI Listing

Publication Analysis

Top Keywords

shrub growth
8
identify effects
8
heat waves
8
waves drought
8
radial growth
8
temperature drought
8
growth
6
drought
6
hot shrub
4
growth hampered
4

Similar Publications

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Drought stress during the plant's growing season is a serious constraint to plant establishment in arid and semiarid Mediterranean ecosystems. Plant growth promoting rhizobacteria (PGPR) as environmentally friendly and innovative management approach can be used to produce seedlings better adapted to these environments. We tested native PGPR strains isolated from drought-tolerant tree and shrub species originating from two climatically contrasting regions: hot-dry (Dehloran) and milder Mediterranean climate (Ilam).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!