We report the first use of metallic nanozyme as colorimetric probe for Pb determination. The method is based on the surface leaching of Au@PtNP nanozyme by Pb-SO ions, accompanied by a decreased catalytic activity of the metallic nanozyme. To construct this colorimetric determination, the Pt deposition onto the AuNPs was carefully investigated and other experimental factors including kind of substrate and buffer were optimized. With increasing Pb concentration, the catalytic activity of the Au@PtNPs decreased gradually. As a result, the blue color at 650 nm from the oxidation of 3,3',5,5'-tetramethylbenzidine by HO faded gradually. A determination limit of 3.0 nM Pb with a linear range from 20 to 800 nM was obtained. The assay demonstrated negligible response to common metal ions even at elevated concentrations. This colorimetric method was applied to the determination of Pb ions spiked in lake water samples, and good recoveries (96.8-105.2%) were obtained. The above results indicate the potential application of metallic nanozymes in developing robust colorimetric assays. Graphical abstract Schematic representation of the surface leaching of Au@PtNP nanozyme by Pb-SO ions, accompanying the decreased catalytic activity of the metallic nanozyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-04234-6 | DOI Listing |
J Colloid Interface Sci
January 2025
Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China; School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China. Electronic address:
Most transition metal-based electrocatalysts, when used for the oxygen evolution reaction (OER), undergo significant restructuring under alkaline conditions, forming localized oxides/hydroxides (MOOH), which act as the real active centers, activating adjacent metal sites and creating new active sites that enhance electrocatalytic behavior. Nevertheless, inducing rapid and in-depth self-reconstruction of catalyst surfaces remains a huge challenge. Herein, this work achieves rapid and in-depth self-reconstruction by doping fluorine into the lattice of transition metal oxides (MO).
View Article and Find Full Text PDFSci Total Environ
January 2025
School of the Environment, University of Queensland, QLD, Australia.
The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.
View Article and Find Full Text PDFChempluschem
January 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India.
The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.
View Article and Find Full Text PDFBioorg Chem
January 2025
CSIR- Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
The expanding prevalence of microbial resistance to conventional treatments has triggered a race to develop alternative/improved strategies to combat drug-resistant microorganisms in an efficient manner. Here, the lethal impact of the biosynthesized gold nanoparticles (AuNPs) against multi-drug resistant (MDR) bacteria has been elucidated. AuNPs, synthesized from the extracts of the fruit, leaf and peel of the Citrus maxima plant, were physicochemically characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), electron microscopy and spectroscopic techniques not only confirmed the production of AuNPs of size below 100 nm but also identified the phytochemicals adsorbed onto the surface of NPs.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.
The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!