The secretome of Trichoderma reesei contains a mixture of cellulases, hemicellulases, amylases, proteases, and lipases that synergistically degrade plant biomass. Trichodermapepsin (TrAsP), the most prominent protease of T. reesei, affects the stability of cellulases. Similar to cellulase production, TrAsP production also depends on carbon and nitrogen sources. Unlike the cellulase mechanism, the regulatory mechanism of TrAsP remains unknown. Therefore, this study aimed to determine the effect of the main cellulase regulator Xyr1 and nitrogen regulator Are1 on trasp regulation. Cellulase inducer Avicel and TrAsP inducer galactose were used as carbon sources. qRT-PCR analysis revealed that Xyr1 and Are1 acted as a repressor and an activator for trasp expression, respectively. Compared to Avicel, relative expression was higher in galactose. The binding motifs of Xyr1 and Are1 were located in upstream of the trasp promoter. From promoter deletant analysis using the β-glucuronidase reporter gene, the area from - 870 bp to - 670 bp was identified as the only region for positive regulation and there were both binding motifs of Xyr1 and Are1. Reporter assay of mutants confirmed functions of downregulation of Xyr1 and upregulation of Are1. Electrophoretic mobility shift assay demonstrated the binding ability of Xyr1 and Are1 to the particular binding motifs and their functionality was confirmed. Further, this study demonstrated that Cre1, Xpp1, and Pac1 downregulate trasp expression similar to that in cellulase regulation mechanism. These results demonstrate that transcriptional regulators of cellulase control trasp expression and suggest the possibility of the existence of specific protease regulators in T. reesei.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-020-01955-yDOI Listing

Publication Analysis

Top Keywords

xyr1 are1
20
trasp expression
12
binding motifs
12
trasp
9
trichoderma reesei
8
motifs xyr1
8
are1
7
cellulase
6
xyr1
6
expression
5

Similar Publications

Role of the Nitrogen Metabolism Regulator TAM1 in Regulation of Cellulase Gene Expression in Trichoderma reesei.

Appl Environ Microbiol

January 2023

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.

The filamentous fungus Trichoderma reesei is one of the most prolific cellulase producers and has been established as a model microorganism for investigating mechanisms modulating eukaryotic gene expression. Identification and functional characterization of transcriptional regulators involved in complex and stringent regulation of cellulase genes are, however, not yet complete. Here, a Zn(II)Cys-type transcriptional factor TAM1 that is homologous to Aspergillus nidulans TamA involved in nitrogen metabolism, was found not only to regulate ammonium utilization but also to control cellulase gene expression in T.

View Article and Find Full Text PDF

The secretome of Trichoderma reesei contains a mixture of cellulases, hemicellulases, amylases, proteases, and lipases that synergistically degrade plant biomass. Trichodermapepsin (TrAsP), the most prominent protease of T. reesei, affects the stability of cellulases.

View Article and Find Full Text PDF

The GATA-Type Transcriptional Factor Are1 Modulates the Expression of Extracellular Proteases and Cellulases in .

Int J Mol Sci

August 2019

State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.

is a biotechnologically important filamentous fungus with the remarkable ability to secrete large amounts of enzymes, whose production is strongly affected by both the carbon and nitrogen sources. While the carbon metabolism regulators are extensively studied, the regulation of enzyme production by the nitrogen metabolism regulators is still poorly understood. In this study, the GATA transcription factor Are1, which is an orthologue of the global nitrogen regulator AREA, was identified and characterized for its functions in regulation of both protease and cellulase production in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!