Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concept of a ball-valve siren is developed through experimentation and theoretical modeling. The ball-valve siren is a source transducer developed for the purpose of establishing the concept of infrasound generation through the modulation of compressed air flowing through a rotating ball valve and released into the atmosphere, in the context of a siren. Directivity, frequency response, and propagation experiments were performed for the fundamental frequency component, and the results compare favorably to an empirical model based on monopole and dipole radiation. The results show that a small ball-valve siren can generate useful infrasound radiation with nominal directivity at frequencies in the range 1 to 8 Hz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0000850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!