Stability and duration of ultrasonic phantoms are still subjects of research. This work presents a tissue-mimicking material (TMM) to evaluate high-intensity therapeutic ultrasound (HITU) devices, composed of gellan gum (matrix), microparticles (scatterers), and chemicals. The ultrasonic velocity and attenuation coefficient were characterized as a function of temperature (range 20 °C-85 °C). The nonlinear parameter B/A was determined by the finite amplitude insertion substitution (FAIS) method, and the shear modulus was determined by a transient elastography technique. The thermal conductivity and specific heat were determined by the line source method. The attenuation was stable for 60 days, and in an almost linear frequency dependence (0.51fdB cm), at 20 °C (1-10 MHz). All other evaluated physical parameters are also close to typical soft tissue values. Longitudinal ultrasonic velocities were between 1.49 and 1.75 mm μs, the B/A parameter was 7.8 at 30 °C, and Young's modulus was 23.4 kPa. The thermal conductivity and specific heat values were 0.7 W(m K) and 4.7 kJ(kg K), respectively. Consistent temperature increases and thermal doses occurred under identical HITU exposures. Low cost, longevity, thermal stability, and thermal repeatability make TMM an excellent material for ultrasonic thermal applications. The TMM developed has the potential to assess the efficacy of hyperthermia devices and could be used to adjust the ultrasonic emission of HITU devices.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0000813DOI Listing

Publication Analysis

Top Keywords

ultrasonic thermal
8
hitu devices
8
thermal conductivity
8
conductivity specific
8
specific heat
8
thermal
7
ultrasonic
6
durability study
4
study gellan
4
gellan gum-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!