A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing age-related changes in cardio-respiratory dynamics by multimodal coupling assessment. | LitMetric

AI Article Synopsis

  • The study introduces a new method called the multimodal coupling analysis (MMCA) to quantify respiratory sinus arrhythmia (RSA) and assess parasympathetic function, addressing limitations of the commonly used Fourier spectral analysis.
  • Using data from 20 young and 20 elderly subjects, the MMCA method showed that elderly individuals had diminished RSA activity and nonlinearity in their heart rate-respiration dynamics compared to younger individuals.
  • The findings suggest that MMCA, along with a cycle-based analysis, offers a more effective way to evaluate aging effects on parasympathetic function and the complexity of RSA waveforms than traditional Fourier and wavelet methods.

Article Abstract

Quantifying respiratory sinus arrhythmia (RSA) can provide an index of parasympathetic function. Fourier spectral analysis, the most widely used approach, estimates the power of the heart rate variability in the frequency band of breathing. However, it neglects the time-varying characteristics of the transitions as well as the nonlinear properties of the cardio-respiratory coupling. Here, we propose a novel approach based on Hilbert-Huang transform, called the multimodal coupling analysis (MMCA) method, to assess cardio-respiratory dynamics by examining the instantaneous nonlinear phase interactions between two interconnected signals (i.e., heart rate and respiration) and compare with the counterparts derived from the wavelet-based method. We used an online database. The corresponding RSA components of the 90-min ECG and respiratory signals of 20 young and 20 elderly healthy subjects were extracted and quantified. A cycle-based analysis and a synchro-squeezed wavelet transform were also introduced to assess the amplitude or phase changes of each respiratory cycle. Our results demonstrated that the diminished mean and standard deviation of the derived dynamical RSA activities can better discriminate between elderly and young subjects. Moreover, the degree of nonlinearity of the cycle-by-cycle RSA waveform derived from the differences between the instantaneous frequency and the mean frequency of each respiratory cycle was significantly decreased in the elderly subjects by the MMCA method. The MMCA method in combination with the cycle-based analysis can potentially be a useful tool to depict the aging changes of the parasympathetic function as well as the waveform nonlinearity of RSA compared to the Fourier-based high-frequency power and the wavelet-based method.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5134868DOI Listing

Publication Analysis

Top Keywords

mmca method
12
cardio-respiratory dynamics
8
multimodal coupling
8
parasympathetic function
8
heart rate
8
wavelet-based method
8
cycle-based analysis
8
respiratory cycle
8
rsa
5
method
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!