Restoring chaos using deep reinforcement learning.

Chaos

Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA.

Published: March 2020

A catastrophic bifurcation in non-linear dynamical systems, called crisis, often leads to their convergence to an undesirable non-chaotic state after some initial chaotic transients. Preventing such behavior has been quite challenging. We demonstrate that deep Reinforcement Learning (RL) is able to restore chaos in a transiently chaotic regime of the Lorenz system of equations. Without requiring any a priori knowledge of the underlying dynamics of the governing equations, the RL agent discovers an effective strategy for perturbing the parameters of the Lorenz system such that the chaotic trajectory is sustained. We analyze the agent's autonomous control-decisions and identify and implement a simple control-law that successfully restores chaos in the Lorenz system. Our results demonstrate the utility of using deep RL for controlling the occurrence of catastrophes in non-linear dynamical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0002047DOI Listing

Publication Analysis

Top Keywords

lorenz system
12
deep reinforcement
8
reinforcement learning
8
non-linear dynamical
8
dynamical systems
8
restoring chaos
4
chaos deep
4
learning catastrophic
4
catastrophic bifurcation
4
bifurcation non-linear
4

Similar Publications

: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.

View Article and Find Full Text PDF

Impact of Standardized Reporting Systems on Patient Experience in Radiology.

J Patient Exp

January 2025

Neo Q Quality in Imaging GmbH, Berlin, Germany.

Patient experience is a vital measure of healthcare quality, affecting satisfaction, engagement, and outcomes. Standardized radiology reporting can improve care by enhancing communication, reducing errors, and optimizing workflows. This article examines the role of structured reporting and AI in improving patient experience, addressing challenges like workload imbalances and communication issues.

View Article and Find Full Text PDF

The effect of HLA genotype on disease onset and severity in CTLA-4 insufficiency.

Front Immunol

January 2025

Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Introduction: Human Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) insufficiency caused by heterozygous germline mutations in is a complex immune dysregulation and immunodeficiency syndrome presenting with reduced penetrance and variable disease expressivity, suggesting the presence of disease modifiers that trigger the disease onset and severity. Various genetic and non-genetic potential triggers have been analyzed in CTLA-4 insufficiency cohorts, however, none of them have revealed a clear association to the disease. Multiple HLA haplotypes have been positively or negatively associated with various autoimmune diseases and inborn errors of immunity (IEI) due to the relevance of MHC in the strength of the T cell responses.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!