[Evaluation and classification of dissolution behavior and capability of Chinese medicine granules based on an inline turbidity sensor].

Zhongguo Zhong Yao Za Zhi

Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine Beijing 102400, China Beijing Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission Beijing 102400, China National and Regional Joint Engineering Research Center for Key Technologies of Chinese Medicine Formula Granules Tianjin 301700, China.

Published: January 2020

In this paper, the inline turbidity sensor technology was used to quantify the turbidity of the solution during the dissolution of Chinese medicine granules. The probe measurement position and the magnetic stirring speed were optimized. As a result, the stirring speed was 400 r·min~(-1), and the probe position was at 1/4 of the diameter of the beaker. The measurement results were accurate and reliable. Totally 105 batches of commercially available Chinese medicine granules were collected and dissolved according to the requirements of the Chinese Pharmacopoeia. At the time point of 5 min, 57 batches of granules were completely dissolved, and the corresponding turbidity values ranged between 0-70 FTU; 32 batches of granules showed a slight turbidity, and the corresponding turbidity values ranged between 70-350 FTU; 14 batches of granule solution were turbid, and the corresponding turbidity values ranged between 350-2 000 FTU; two batches of granule solution were heavily turbid, and the corresponding turbidity values were >2 000 FTU. Among the above results, the number of batches in line with the pharmacopoeia dissolution requirement was 84.76%, and the dissolution of some granules still needed to be improved. The turbidity sensor recorded the change curve of turbidity value over time(solubility behavior curve). The degree of important of disintegration and dissolution during the dissolution process showed disintegration > dissolution, disintegration≈dissolution, disintegration < dissolution. The dissolution behavior of the granules can be classified into three categories. The analysis of the mechanism in the process of granule solubility provides a basis for product process improvement.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20191219.304DOI Listing

Publication Analysis

Top Keywords

corresponding turbidity
16
turbidity values
16
chinese medicine
12
medicine granules
12
values ranged
12
ftu batches
12
disintegration dissolution
12
turbidity
10
dissolution
9
dissolution behavior
8

Similar Publications

The self-assembly of fibrin is a vital process in blood clotting, primarily facilitated by the interactions between knobs "A" and "B" in the central E region of one molecule and the corresponding holes "a" and "b" in the peripheral D regions of two other fibrin molecules. However, the precise function of the interactions between knob "B" and hole "b" during fibrin polymerization remains a subject of ongoing debate. The present study focuses on investigating intermolecular interactions between knob "B" and hole "b".

View Article and Find Full Text PDF

Introduction: This in vitro study assessed how shade changes induced by endodontic medicaments affect the transmission of single and multiples wavelengths of infrared light through enamel and dentin.

Methods: Eighteen extracted single-rooted permanent teeth were prepared, removing all extrinsic staining, and cementum. Tooth slices were treated for 4 weeks with UltraCal™ XS, Ledermix™, or were untreated controls.

View Article and Find Full Text PDF

Enhanced coagulation of Microcystis aeruginosa using titanium xerogel coagulant.

Chemosphere

February 2025

Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, 430068, China. Electronic address:

Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.

View Article and Find Full Text PDF

Time-of-flight (TOF) based underwater imaging is of great importance in practical applications due to its high image quality. Existing works separate scattered and ballistic photons in the time and space domains to recover objects in weakly scattered underwater scenes. However, in turbid underwater environments, absorption and strong anisotropic scattering cause weak ballistic light tightly coupled with forward-scattered and backward-scattered photons.

View Article and Find Full Text PDF
Article Synopsis
  • The Strait of Malacca, an essential trade route, is home to diverse marine life, including reef-building hard corals, which are threatened by climate change and human activities.
  • This study analyzes live hard coral coverage from 1995 to 2016 and examines six physicochemical factors influencing coral health using remote sensing and reanalysis data.
  • Findings indicate a consistent decline in live coral coverage over two decades, with sea surface temperature, turbidity, and sea surface salinity identified as the most significant factors affecting coral distribution in the strait.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!