In this paper, a real time release testing(RTRT) model for predicting the disintegration time of Tianshu tablets was established on the basis of the concept of quality by design(QbD), in order to improve the quality controllability of the production process. First, 49 batches of raw materials and intermediates were collected. Afterwards, the physical quality attributes of all materials were comprehensively characterized. The partial least square(PLS) regression model was established with the 72 physical quality attributes of raw materials and intermediates as input and the disintegration time(DT) of uncoated tablets as output. Then, the variable screening was carried out based on the variable importance in the projection(VIP) indexes. Moisture content of raw materials(%HR), tapped density of wet masses(D_c), hygroscopicity of dry granules(%H), moisture content of milling granules(%HR) and Carr's index of mixed granules(IC) were determined as the potential critical material attributes(pCMAs). According to the effects of interactions of pCMAs on the performance of the prediction model, it was finally determined that the wet masses' D_c and the dry granules'%H were critical material attributes(CMAs). A RTRT model of the disintegration time prediction was established as DT=34.09+2×D_c+3.59×%H-5.29×%H×D_c,with R~2 equaling to 0.901 7 and the adjusted R~2 equaling to 0.893 3. The average relative prediction error of validation set for the RTRT model was 3.69%. The control limits of the CMAs were determined as 0.55 g·cm~(-3)<D_c<0.63 g·cm~(-3) and 4.77<%H<7.59 according to the design space. The RTRT model of the disintegration time reflects the understanding of the process system, and lays a foundation for the implementation of intelligent control strategy of the key process of Tianshu Tablets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20191219.303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!