CO is extremely toxic to humans since it can combine with haemoglobin to form carboxy-haemoglobin that reduces the oxygen-carrying capacity of blood. Metal-organic frameworks (MOFs), in particular InOF-1, are currently receiving preferential attention for the separation and capture of CO. In this investigation we report a theoretical study based on periodic density-functional-theory (DFT) analysis and matching experimental results (in situ DRIFTS). The aim of this article is to describe the non-covalent interactions between the functional groups of InOF-1 and the CO molecule since they are crucial to understand the adsorption mechanism of these materials. Our results show that the CO molecule mainly interacts with the μ2-OH hydroxo groups of InOF-1 through O-HO hydrogen bonds, and Cπ interactions by the biphenyl rings of the MOF. These results provide useful information on the CO adsorption mechanisms in InOF-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00579g | DOI Listing |
ACS Appl Mater Interfaces
August 2021
Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, 1 Gongyuan Street, Linfen, Shanxi 041004, P. R. China.
Proton-conductive materials have attracted increasing attention because of their broad explorations in chemical sensors, water electrolysis, fuel cells, and biological systems. Especially, metal-organic frameworks (MOFs) have been demonstrated to be extremely promising candidates as proton-exchange membrane (PEM) fuel cells. Compared with other configurations, MOFs with one-dimensional (1D) channels have the characteristics of enhancing the host-guest interaction and promoting the anisotropic motion of proton carriers in restricted volume, which are beneficial for acquiring rich proton sources and forming successive hydrogen bonds to improve proton conductivity.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2020
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CP 04510, CDMX, Mexico.
CO is extremely toxic to humans since it can combine with haemoglobin to form carboxy-haemoglobin that reduces the oxygen-carrying capacity of blood. Metal-organic frameworks (MOFs), in particular InOF-1, are currently receiving preferential attention for the separation and capture of CO. In this investigation we report a theoretical study based on periodic density-functional-theory (DFT) analysis and matching experimental results (in situ DRIFTS).
View Article and Find Full Text PDFDalton Trans
June 2019
Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
The enhancement of CO capture due to the confinement of polar molecules within InOF-1 was previously demonstrated. In particular, the presence of MeOH produced 1.30-fold increase in the total CO capture.
View Article and Find Full Text PDFDalton Trans
April 2019
Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
The 2-propanol (i-PrOH) adsorption properties of InOF-1 are investigated along with the confinement of small amounts of this alcohol to enhance the CO2 capture for i-PrOH@InOF-1 (1.25-fold improvement compared to pristine InOF-1). InOF-1 exhibited a high affinity towards i-PrOH, experimentally quantified by ΔHads (-55 kJ mol-1), and DFT geometry optimisations showed strong hydrogen bonding between O(i-PrOH) and H(μ2-OH).
View Article and Find Full Text PDFDalton Trans
November 2017
Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!