Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Silicon semiconductor samples implanted with Cu ions and samples co-implanted with Cu- and N-ions were prepared by MEVVA and the Kaufman technique. None of the samples showed evidence of secondary phases. The initially n-type Si matrix, when implanted with Cu ions, changed to a p-type semiconductor, and the Cu ions existed as local Cu2+ cations in the p-type environment. As a result, none of the Cu-implanted samples were ferromagnetic at room temperature. The co-implanted samples, on the other hand, showed room-temperature ferromagnetism because the introduction of N ions made the carrier type change from p-type to n-type which is favorable for the appearance of Cu2+. First principles calculations were applied to understand the experimental phenomena. The formation energy was reduced by implanting N ions, and was decreased effectively with the increase in ratio of N to Cu ions. The density of states and spin density of states indicated that the hybridization of s, p and d electrons induced ferromagnetism at 0 K. Particularly, we proposed possible exchange interactions between the Cu2+-N-(N4+)-Cu2+ ions to explain the ferromagnetism mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp05608d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!