Microwave metasurfaces comprising overlapping layers of circular patches arranged in a hexagonal array are found to support edge modes akin to edge plasmons. The coupling of these edge modes across small gaps between two such arrays is explored. This phenomenon, well known at optical frequencies, is verified here for the first time, to the best of our knowledge, at microwave frequencies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.384639DOI Listing

Publication Analysis

Top Keywords

edge modes
12
coupled edge
4
modes supported
4
supported microwave
4
microwave metasurface
4
metasurface microwave
4
microwave metasurfaces
4
metasurfaces comprising
4
comprising overlapping
4
overlapping layers
4

Similar Publications

We study topological charge pumping (TCP) in the Rice-Mele (RM) model with irreciprocal hopping. The non-Hermiticity gives rise to interesting pumping physics, owing to the presence of skin effect and exceptional points. In the static one-dimensional (1D) RM model, we find two independent tuning knobs that can drive the topological transition, namely, non-Hermitian parameter $\gamma$ and system size $N$.

View Article and Find Full Text PDF

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Electrostatic in-plane structural superlubric actuator.

Nat Commun

January 2025

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor.

View Article and Find Full Text PDF

Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.

PLoS Comput Biol

January 2025

Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.

Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!