A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study. | LitMetric

Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.

Int J Mol Sci

Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.

Published: March 2020

With recent advances in single-cell RNA sequencing, enormous transcriptome datasets have been generated. These datasets have furthered our understanding of cellular heterogeneity and its underlying mechanisms in homogeneous populations. Single-cell RNA sequencing (scRNA-seq) data clustering can group cells belonging to the same cell type based on patterns embedded in gene expression. However, scRNA-seq data are high-dimensional, noisy, and sparse, owing to the limitation of existing scRNA-seq technologies. Traditional clustering methods are not effective and efficient for high-dimensional and sparse matrix computations. Therefore, several dimension reduction methods have been introduced. To validate a reliable and standard research routine, we conducted a comprehensive review and evaluation of four classical dimension reduction methods and five clustering models. Four experiments were progressively performed on two large scRNA-seq datasets using 20 models. Results showed that the feature selection method contributed positively to high-dimensional and sparse scRNA-seq data. Moreover, feature-extraction methods were able to promote clustering performance, although this was not eternally immutable. Independent component analysis (ICA) performed well in those small compressed feature spaces, whereas principal component analysis was steadier than all the other feature-extraction methods. In addition, ICA was not ideal for fuzzy C-means clustering in scRNA-seq data analysis. K-means clustering was combined with feature-extraction methods to achieve good results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139673PMC
http://dx.doi.org/10.3390/ijms21062181DOI Listing

Publication Analysis

Top Keywords

scrna-seq data
16
dimension reduction
12
single-cell rna
12
rna sequencing
12
feature-extraction methods
12
clustering models
8
high-dimensional sparse
8
reduction methods
8
component analysis
8
clustering
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!