The paper presented the methodology for the construction of a soft sensor used for activated sludge bulking identification. Devising such solutions fits within the current trends and development of a smart system and infrastructure within smart cities. In order to optimize the selection of the data-mining method depending on the data collected within a wastewater treatment plant (WWTP), a number of methods were considered, including: artificial neural networks, support vector machines, random forests, boosted trees, and logistic regression. The analysis conducted sought the combinations of independent variables for which the devised soft sensor is characterized with high accuracy and at a relatively low cost of determination. With the measurement results pertaining to the quantity and quality of wastewater as well as the temperature in the activated sludge chambers, a good fit can be achieved with the boosted trees method. In order to simplify the selection of an optimal method for the identification of activated sludge bulking depending on the model requirements and the data collected within the WWTP, an original system of weight estimation was proposed, enabling a reduction in the number of independent variables in a model-quantity and quality of wastewater, operational parameters, and the cost of conducting measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180765PMC
http://dx.doi.org/10.3390/s20071941DOI Listing

Publication Analysis

Top Keywords

activated sludge
16
soft sensor
12
sludge bulking
12
identification activated
8
data collected
8
boosted trees
8
independent variables
8
quality wastewater
8
sensor application
4
application identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!