Large-displacement microelectromechanical system (MEMS) scanners are in high demand for a wide variety of optical applications. Kirigami, a traditional Japanese art of paper cutting and folding, is a promising engineering method for creating out-of-plane structures. This paper explores the feasibility and potential of a kirigami-inspired electrothermal MEMS scanner, which achieves large vertical displacement by out-of-plane film actuation. The proposed scanner is composed of film materials suitable for electrothermal self-reconfigurable folding and unfolding, and microscale film cuttings are strategically placed to generate large displacement. The freestanding electrothermal kirigami film with a 2 mm diameter and high fill factor is completely fabricated by careful stress control in the MEMS process. A 200 μm vertical displacement with 131 mW and a 20 Hz responsive frequency is experimentally demonstrated as a unique function of electrothermal kirigami film. The proposed design, fabrication process, and experimental test validate the proposed scanner's feasibility and potential for large-displacement scanning with a high fill factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230398 | PMC |
http://dx.doi.org/10.3390/mi11040362 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.
This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China.
This paper presents a coaxial integrated macro-micro composite actuator. The macro-actuator of the macro-micro composite actuator is similar to a moving coil type voice coil motor, and a giant magnetostrictive actuator is installed coaxially inside it as a micro-actuator. In this work, kinetic models are established for both the macro-actuator and micro-actuator, and based on the models, an automatic disturbance rejection controller is adopted to control the macro-actuator, and a fuzzy sliding mode controller is adopted for the micro-actuator.
View Article and Find Full Text PDFAcc Mater Res
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia.
Introduction: Owing to its high prevalence, colossal potential of chemoresistance, metastasis, and relapse, breast cancer (BC) is the second leading cause of cancer-related fatalities in women. Several treatments (eg, chemotherapy, surgery, radiations, hormonal therapy, etc.) are conventionally prescribed for the treatment of BC; however, these are associated with serious systemic aftermaths.
View Article and Find Full Text PDFActa Psychol (Amst)
January 2025
School of Textiles and Design, Heriot-Watt University, Galashiels TD1 3HF, United Kingdom. Electronic address:
This study explores the efficacy of somatosensory interactions in enhancing mental health care by examining the deployment and impact of these technologies. Based on a scoping review of 46 research studies, our analysis reveals that traditional mental health interventions often fail to align with prevalent technological trends. However, somatosensory interactions bridge this gap by creating immersive and engaging experiences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!