Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sodium butyrate (SoB) supplementation has been suggested to attenuate the development of non-alcoholic fatty liver disease (NAFLD). Here, we determined the therapeutic potential of SoB on NAFLD progression and molecular mechanism involved. Eight-week old C57BL/6J mice were pair-fed a fat-, fructose- and cholesterol-rich diet (FFC) or control diet (C). After 8 weeks, some mice received 0.6g SoB/kg bw in their respective diets (C+SoB; FFC+SoB) or were maintained on C or FFC for the next 5 weeks of feeding. Liver damage, markers of glucose metabolism, inflammation, intestinal barrier function and melatonin metabolism were determined. FFC-fed mice progressed from simple steatosis to early non-alcoholic steatohepatitis, along with significantly higher TNFα and IL-6 protein levels in the liver and impaired glucose tolerance. In FFC+SoB-fed mice, disease was limited to steatosis associated with protection against the induction of mRNA and iNOS protein levels in livers. SoB supplementation had no effect on FFC-induced loss of tight junction proteins in the small intestine but was associated with protection against alterations in melatonin synthesis and receptor expression in the small intestine and livers of FFC-fed animals. Our results suggest that the oral supplementation of SoB may attenuate the progression of simple steatosis to steatohepatitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231312 | PMC |
http://dx.doi.org/10.3390/nu12040951 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!