Deep Learning Approaches for Detecting Freezing of Gait in Parkinson's Disease Patients through On-Body Acceleration Sensors.

Sensors (Basel)

Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7., 28031 Madrid, Spain.

Published: March 2020

Freezing of gait (FOG) is one of the most incapacitating motor symptoms in Parkinson's disease (PD). The occurrence of FOG reduces the patients' quality of live and leads to falls. FOG assessment has usually been made through questionnaires, however, this method can be subjective and could not provide an accurate representation of the severity of this symptom. The use of sensor-based systems can provide accurate and objective information to track the symptoms' evolution to optimize PD management and treatments. Several authors have proposed specific methods based on wearables and the analysis of inertial signals to detect FOG in laboratory conditions, however, its performance is usually lower when being used at patients' homes. This study presents a new approach based on a recurrent neural network (RNN) and a single waist-worn triaxial accelerometer to enhance the FOG detection performance to be used in real home-environments. Also, several machine and deep learning approaches for FOG detection are evaluated using a leave-one-subject-out (LOSO) cross-validation. Results show that modeling spectral information of adjacent windows through an RNN can bring a significant improvement in the performance of FOG detection without increasing the length of the analysis window (required to using it as a cue-system).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181252PMC
http://dx.doi.org/10.3390/s20071895DOI Listing

Publication Analysis

Top Keywords

fog detection
12
deep learning
8
learning approaches
8
freezing gait
8
parkinson's disease
8
provide accurate
8
fog
7
approaches detecting
4
detecting freezing
4
gait parkinson's
4

Similar Publications

Background: Cognitive impairment, colloquially termed "brain fog", is one of the most prevalent manifestations of post-Covid syndrome and a major contributor to impaired daily function and reduced quality of life. However, despite the high numbers of affected individuals presenting to clinical services with cognitive impairment, little work has been undertaken to date on the suitability of current memory clinic tests for identifying the cognitive deficits in this new acquired cognitive disorder.The aim of this study was therefore to determine the performance of people with post-Covid syndrome presenting with cognitive impairment on the Addenbrooke's Cognitive Examination-III (ACE-III), a cognitive test used widely in memory clinics.

View Article and Find Full Text PDF

This paper proposes a solution to the challenging task of autonomously landing Unmanned Aerial Vehicles (UAVs). An onboard computer vision module integrates the vision system with the ground control communication and video server connection. The vision platform performs feature extraction using the Speeded Up Robust Features (SURF), followed by fast Structured Forests edge detection and then smoothing with a Kalman filter for accurate runway sidelines prediction.

View Article and Find Full Text PDF

Freezing of gait (FOG) is a disabling yet poorly understood paroxysmal gait disorder affecting the vast majority of patients with Parkinson's disease (PD) as they reach advanced stages of the disorder. Falling is one of the most disabling consequences of a FOG episode; it often results in injury and a future fear of falling, leading to diminished social engagement, a reduction in general fitness, loss of independence, and degradation of overall quality of life. Currently, there is no robust or reliable treatment against FOG in PD.

View Article and Find Full Text PDF

Automatic License Plate Recognition (ALPR) systems are essential for Intelligent Transport Systems (ITS), effective transportation management, security, law enforcement, etc. However, the performance of ALPR systems can be significantly affected by environmental conditions such as heavy rain, fog, and pollution. This paper introduces a weather-adaptive Convolutional Neural Network (CNN) framework that leverages the YOLOv10 model that is designed to enhance license plate detection in adverse weather conditions.

View Article and Find Full Text PDF

Adverse weather (rain, snow, and fog) can negatively impact computer vision tasks by introducing noise in sensor data; therefore, it is essential to recognize weather conditions for building safe and robust autonomous systems in the agricultural and autonomous driving/drone sectors. The performance degradation in computer vision tasks due to adverse weather depends on the type of weather and the intensity, which influences the amount of noise in sensor data. However, existing weather recognition datasets often lack intensity labels, limiting their effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!