Oral squamous cell carcinoma (OSCC) is a cancerous disease with poor prognosis. According to the statistics, the 5-year survival rate has not improved significantly over the past 20 years. The platelet-derived growth factor (PDGF) and its signaling pathway is a key regulator of angiogenesis and tumorigenesis. High level of PDGF and its receptor (PDGFR) have been reported in several types of malignancies. In this study, we investigated the relationship of the molecular expression levels of PDGF and PDGFR with clinicopathological parameters in OSCC. To this end, we measured the mRNA and protein levels of PDGF and PDGFR by real-time quantitative PCR (qRT-PCR), immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA), respectively. We found positive correlations of the mRNA levels of PDGFA, PDGFB, and PDGFRB with lymph node metastasis and poor overall survival (OS). High expression of PDGF, PDGFRA, and PDGFRB were remarkably associated with lymph node metastasis and poor OS, as determined by immunohistochemistry. Preoperative serum levels of PDGF-AA and PDGF-BB had a positive correlation with preoperative platelet count. Elevated serum levels of PDGF-AA. PDGF-BB, and platelet count correlated with lymph node metastasis and an unfavorable outcome. In multivariate Cox regression analysis, PDGFA mRNA, PDGFB mRNA, PDGFRB mRNA, PDGF immunoexpression, PDGFRB immunoexpression, serum PDGF-AA, serum PDGF-BB, and platelet count emerged as significant independent prognostic factors for OS. In vitro, we found that elevated PDGF promotes colony formation, migration, and invasiveness of SAS and OECM-1 cancer cell lines. Our results suggest that the expression level of serum PDGF has the potential to become a useful diagnostic marker for the prognosis of OSCC. In addition, PDGFR should be considered as a potential therapeutic target for OSCC. Furthermore, research should be undertaken to elucidate the role of PDGF and PDGFR regarding the behavior of tumor cells in OSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177415PMC
http://dx.doi.org/10.3390/ijms21072360DOI Listing

Publication Analysis

Top Keywords

pdgf pdgfr
12
lymph node
12
node metastasis
12
platelet count
12
pdgf
9
platelet-derived growth
8
growth factor
8
poor prognosis
8
oral squamous
8
squamous cell
8

Similar Publications

Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.

View Article and Find Full Text PDF

Biogenic hydroxyapatite is known for its osteoinductive potential due to its similarity to human bone and biocompatibility, but insufficient vascularization compared to autogenous bone during early implantation limits bone integration and osteogenesis. Fluorine has been shown to improve hydroxyapatite's mechanical properties and the coupling of osteogenic and angiogenic cells. In this study, fluorine-modified biogenic hydroxyapatite (FPHA) with varying fluorine concentrations was prepared and tested for its ability to promote vascularized osteogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Nowadays, the use of monoclonal antibodies to target angiogenic signalling pathways is common, but, unfortunately, the clinical activity of these agents is limited. Thus, the development of approaches targeting multiple pathways for anti-angiogenic effect will lead to increase the clinical benefit. For this purpose, oleuropein, hesperidin, piperine, proanthocyanidins and retinoic acid, which have previously been proven to be bioactive components, anti-angiogenic performances were experimentally tested in retinal pigment epithelial cells.

View Article and Find Full Text PDF

Primary cilia as antennas for oxygen.

Am J Physiol Cell Physiol

December 2024

Institute of Physiology, University Duisburg-Essen, Essen, Germany.

Over the last few decades, the primary cilium, an inconspicuous cell organelle, has increasingly become the focus of current research. The primary cilium is a microtubule-based, non-motile, antenna-like structure that is present on almost all mammalian cells. The ciliary membrane incorporates a large number of receptor molecules, which further characterize this cellular organelle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!