The aim of this work is the evaluation of a Sulfonated Poly Ether-Ether Ketone (S-PEEK) polymer modified by the addition of pure Santa Barbara Amorphous-15 (SBA-15, mesoporous silica) and SBA-15 previously impregnated with phosphotungstic acid (PWA) fillers (PWA/SBA-15) in order to prepare composite membranes as an alternative to conventional Nafion membranes. This component is intended to be used as an electrolyte in electrochemical energy systems such as hydrogen and methanol Proton Exchange Membrane Fuel Cell (PEMFC) and Electrochemical Hydrogen Pumping (EHP). The common requirements for all the applications are high proton conductivity, thermomechanical stability, and fuel and oxidant impermeability. The morphology of the composite membranes was investigated by Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis. Water Uptake (Wup), Ion Exchange Capacity (IEC), proton conductivity, methanol permeability and other physicochemical properties were evaluated. In PEMFC tests, the S-PEEK membrane with a 10 wt.% SBA-15 loading showed the highest performance. For EHP, the inclusion of inorganic materials led to a back-diffusion, limiting the compression capacity. Concerning methanol permeability, the lowest methanol crossover corresponded to the composites containing 5 wt.% and 10 wt.% SBA-15.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178128 | PMC |
http://dx.doi.org/10.3390/ma13071570 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.
View Article and Find Full Text PDFChemphyschem
January 2025
School of Energy and Power, New Energy, 02 Mengxi Street, 212003, Zhenjiang, CHINA.
Since hydrogen is a promising alternative to fossil fuels due to its high energy density and environmental friendliness, water electrolysis for hydrogen production has received widespread attentions wherein the development of active and stable catalytic materials is a key research direction. This article designs a dual transition metal doped functional graphene for hydrogen evolution reaction via density functional theory calculations. Among varied combinations, 16 candidates are screened out that are expected to be stable as reflected by the criterion of formation energy Ef < 0 and active due to its free energy of hydrogen adsorption ∆GH within the window of ±0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.
P2-type NaMnNiO as the cathode for sodium-ion batteries, has a relatively high theoretical specific capacity, but its unstable crystal structure and undesirable phase transitions lead to rapid capacity decay. In this work, Mg-B-O coated NaMnNiO microspheres have been synthesized via a liquid-phase method based on solvothermal synthesized NaMnNiO. The Mg-B-O coating layer significantly improves the electrochemical performance, including specific capacity, rate capability, and cycle stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!