Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy. While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189755 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2646-19.2020 | DOI Listing |
Epilepsia
January 2025
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
Clinical practice guidelines (CPGs) and consensus-based recommendations (CBRs) require considerable effort, collaboration, and time-all within the constraints of finite resources. Professional societies, such as the International League Against Epilepsy (ILAE), must prioritize what topics and questions to address. Implementing evidence-based care remains a crucial challenge in clinical practice.
View Article and Find Full Text PDFDecades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.
View Article and Find Full Text PDFCNS Drugs
January 2025
Faculty of Environmental and Life Sciences, Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK.
Background: Raynaud syndrome (RS) is a peripheral vasculopathy characterised be impaired acral perfusion typically manifesting as skin discolouration with pallor, cyanosis and/or erythema, and increased sensitivity to cold. RS may be primary or secondary to systemic disease, lifestyle and environmental factors or medication. RS has been reported with medication to treat ADHD, but we found no recent comprehensive overview of the literature.
View Article and Find Full Text PDFSci Rep
January 2025
School of Information Engineering, Sanming University, Sanming, 365004, China.
Today, with the increasing use of the Internet of Things (IoT) in the world, various workflows that need to be stored and processed on the computing platforms. But this issue, causes an increase in costs for computing resources providers, and as a result, system Energy Consumption (EC) is also reduced. Therefore, this paper examines the workflow scheduling problem of IoT devices in the fog-cloud environment, where reducing the EC of the computing system and reducing the MakeSpan Time (MST) of workflows as main objectives, under the constraints of priority, deadline and reliability.
View Article and Find Full Text PDFSci Rep
January 2025
Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!