Classification of Health-Related Social Media Posts: Evaluation of Post Content-Classifier Models and Analysis of User Demographics.

JMIR Public Health Surveill

Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, United States.

Published: April 2020

Background: The increasing volume of health-related social media activity, where users connect, collaborate, and engage, has increased the significance of analyzing how people use health-related social media.

Objective: The aim of this study was to classify the content (eg, posts that share experiences and seek support) of users who write health-related social media posts and study the effect of user demographics on post content.

Methods: We analyzed two different types of health-related social media: (1) health-related online forums-WebMD and DailyStrength-and (2) general online social networks-Twitter and Google+. We identified several categories of post content and built classifiers to automatically detect these categories. These classifiers were used to study the distribution of categories for various demographic groups.

Results: We achieved an accuracy of at least 84% and a balanced accuracy of at least 0.81 for half of the post content categories in our experiments. In addition, 70.04% (4741/6769) of posts by male WebMD users asked for advice, and male users' WebMD posts were more likely to ask for medical advice than female users' posts. The majority of posts on DailyStrength shared experiences, regardless of the gender, age group, or location of their authors. Furthermore, health-related posts on Twitter and Google+ were used to share experiences less frequently than posts on WebMD and DailyStrength.

Conclusions: We studied and analyzed the content of health-related social media posts. Our results can guide health advocates and researchers to better target patient populations based on the application type. Given a research question or an outreach goal, our results can be used to choose the best online forums to answer the question or disseminate a message.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160708PMC
http://dx.doi.org/10.2196/14952DOI Listing

Publication Analysis

Top Keywords

health-related social
24
social media
20
media posts
12
posts
10
user demographics
8
share experiences
8
post content
8
social
7
health-related
7
media
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!